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Reinforcement Learning

In RL, we have state s, action a, reward r, policy π(a|s), transition
probability P (s′|s, a) and discount factor γ.

Return:
∑∞

t=0 γ
trt+1

Value of state: V (s) = Eπ[
∑∞

t=0 γ
trt+1|s0 = s]

State-action value: Q(s, a) = Eπ[
∑∞

t=0 γ
trt+1|s0 = s, a0 = a]

One-step temporal difference (TD) error:
δ(s, a) = r(s, a) + γP (s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)
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Background I: Options framework

An option ω ∈ Ω is a triple of:

Initiation set: Iω

Internal policy: πω

Termination condition: βω

Let Θ = {θ, ν}, where following represents parameter for:

θ: Internal policy πω,θ

ν: Termination condition βω,ν

The update for Q value [Bacon et al., 2017]:

Q(s, ω, a) = r(s, a) + γP (s′|s, a)
{

(1− βω,ν(s))QΘ(s, ω) + βω,ν(s)VΩ(s)
}
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Background II: Safety

Unintended or harmful behavior that may emerge from machine
learning systems when we specify the wrong objective function, are not
careful about the learning process, or commit other machine
learning-related implementation errors. [Amodei et al., 2016]

Controllability: Negation of variance in the TD error, controlling
uncertainty in the value of a state-option pair
[Gehring and Precup, 2013].
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Contribution of this work

Safe Option-Critic (SOC) framework provides a novel mechanism to
learn end-to-end safe options.

Derived a policy-gradient style update for a new safe objective
function

max
Θ

J(Θ|d),

where J(Θ|d) = E(s0,ω0)∼d[QΘ(s0, ω0) + ψCΘ(s0, ω0)]

Here CΘ(s0, ω0) = −Ea∼πω,θ(a|s)
[
δ2(s, ω, a)

]
is the controllability,

ψ is the regularizer on controllability, d is initial state-option
distribution.
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Results: Update for gradient

θ update for internal policy of option

E[
∂ log(πω,θ(a|s))

∂θ
QU,Θ(s, ω, a)−

∂ log(πω0,θ(a0|s0))

∂θ
ψδ2(s0, ω0, a0)]

Interpretation: Take better primitive action with a regularization on
minimizing TD error inside an option.

ν update for termination function of option

E[
∂βω,ν(s′)

∂ν
(QΘ(s′, ω)− VΩ(s′))]

Interpretation: Termination unaffected by the controllability.
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Results: Four room environment

(a) OC (b) OC (c) Safe-OC (d) Safe-OC
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Results: Arcade Learning Environment

(a) MsPacman (b) Amidar
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Conclusion

Novel work to incorporate safety in end-to-end options
learning.

Safe-OC framework is scalable to include non-linear function
approximation.

Future Work:

Using n-step return calculation at option switching (current
work return calculation limited until option terminates).

To learn initiation set while learning safe options.

Notion of safety to different levels of hierarchy.
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J., and Mané, D. (2016).
Concrete problems in AI safety.
CoRR.

Bacon, P.-L., Harb, J., and Precup, D. (2017).
The option-critic architecture.
In AAAI, pages 1726–1734.

Gehring, C. and Precup, D. (2013).
Smart exploration in reinforcement learning using absolute
temporal difference errors.
In Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages
1037–1044.

10


	Background
	Option
	Safety

	Contribution
	Results

	Results: Four rooms environment
	Results: Arcade Learning Environment
	Conclusion
	References

