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Abstract

The standard setting in reinforcement learning (RL) to maximize the mean return does not assure a reliable and repeatable
behavior of an agent in safety-critical applications like autonomous driving, robotics, and so forth. Often, penalization
of the objective function with the variance in return is used to limit the unexpected behavior of the agent shown in the
environment. While learning the end-to-end options have been accomplished, in this work, we introduce a novel Bellman
style direct approach to estimate the variance in return in hierarchical policies using the option-critic architecture (Bacon
et al., 2017). The penalization of the mean return with the variance enables learning safer trajectories, which avoids
inconsistently behaving regions. Here, we present the derivation in the policy gradient style method with the new safe
objective function which would provide the updates for the option parameters in an online fashion.
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1 Introduction

The objective function of maximizing the mean return does not offer any constraint on the distribution of the return,
making it a vulnerable strategy for the risk-sensitive domains. The notion of avoiding risks arising from the stochastic
nature of the environment (inherent uncertainty) using the constraint on the variance in return has been studied for a
long time by the research community. Prashanth and Ghavamzadeh (2013); Sato et al. (2001); Tamar et al. (2012, 2016,
2013) constraint the indirect estimate of the variance using the second-order moment methods or directly estimated the
cost-to-go returns with the updates provided after completing the entire trajectory. Sherstan et al. (2018) came up with a
direct estimation of the variance in the λ-return using a Bellman operator in the policy evaluation methods. This work
demonstrated the superiority of the direct estimator over the indirect approaches to estimate the variance.

Temporal abstraction provides a way to learn the policies in a hierarchical fashion which has been shown to improve
exploration, robustness against model misspecification and increases the learning speed in transfer learning. Recently,
option-critic architecture (Bacon et al., 2017) introduced an end-to-end style of learning the options. Jain et al. (2018) used
the variance in the temporal difference (TD) error over the initial state-option pair distribution to estimate the controllable
states in the option-critic.

In this work, we came up with a novel hierarchical safe policy learning approach in the option-critic architecture where
the hierarchical policies are learned by penalizing the direct estimate of the variance in return extending from Sherstan
et al. (2018) in a control setting. We seek to maximize the mean return and minimize the direct estimate of the variance
in return given an initial state-option pair distribution in the policy gradient style.

2 Background

In a Markov Decision Process (MDP), an agent takes an action a∈A, transitions from state St to state St+1, and receives
an immediate reward Rt+1 from the environment. The expected reward is r(St, At) =

∑
r∈R r

∑
s′ P (s′, r|St, At) where

r : S×A→ R. The environment dynamics is modeled by P (St+1|St, At), where P : S×A×S → [0, 1]. A stochastic policy
π(At|St) determines the probability of taking an action in a given state. The MDP is represented by a tuple 〈S,A, P, r, γ〉,
where γ ∈ [0, 1] is a factor discounting the future rewards.

2.1 Option-Critic

The option-critic architecture (Bacon et al., 2017), an option w ∈W is defined as a tuple of 〈Iw, πw, βw〉; where Iw contains
the initial set of states where an option can start, πw is the option policy defining a distribution over action space and
βw determines the termination probability of an option in a state. The policy over the options is denoted by µ(w|s)
describing the distribution over options given a state. Let Θ = [θ, ν, κ] be the parameters of intra-option policy πw,
termination condition βw and policy over options µ respectively. Jπ,µ denotes the objective function of maximizing the
mean return. The intra-option policy gradient (Bacon et al., 2017) update is:

∇θJπ,µ(Θ) = Eπ,µ[∇θ log πθ(At|St,Wt)Qπ,µ(St,Wt, At)],

and the termination gradient (Bacon et al., 2017) is given by:

∇νJπ,µ(Θ) = Eπ,µ[−∇νβν(St+1,Wt)AΘ,Q(St+1,Wt)]

where, AΘ,Q(St+1,Wt) = Q(St+1,Wt)− V (St+1) is the advantage function describing the importance of an option value
over the mean value. In the following work we assume that all the options can be started from any state (Iw ∈ S ∀w ∈W ).

3 Safety in Option-Critic

Taking inspiration from the notion of safety in the actor-critic framework using the constraint variance in return (Jain
et al., 2019), we similarly derive the safe framework in the option-critic. Our notion of safety emphasizes minimizing the
erratic or the harmful behavior of an agent in the environment (Amodei et al., 2016). The higher is the variance in return
from a state; the higher would be the uncertainty in the value estimate of that state. Uncertainty in the value estimate
of a state reflects an inconsistent behavior of the agent in that particular state. Considering that the irregular or sudden
behavior is classified as unsafe, potentially, the unsafe states would exhibit higher variance in return.

Let the return be denoted by

Gt,π,µ = Rt+1 + γRt+2 + γ2Rt+3 + · · · = Rt+1 + γGt+1,π,µ.

We consider Zt = (St,Wt) as an augmented state space - a space of state-option pair. Here, the transition matrix over the
augmented state space is given by:

P (z′|z, a) = P (s′|s, a)[(1− βν(s′, w))1w=w′ + βν(s′, w)µκ(w′|s′)] (1)
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The rewards are coming from a base MDP, where we write r(z, a, z′) = r(s, a). Since,
∑
z′ P (z′|z, a) = 1, therefore, the

reward model is defined as:

r(s, a) = Eπ,µ[Rt+1|St = s,At = a] =
∑
z′

P (z′|z, a)r(z, a, z′)

Lemma 1. Eb[γλδt,π
(
ρt+1G

λ
t+1,π − Eb[ρt+1Qπ(St+1, At+1)|St = s,At = a]

)∣∣St = s,At = a] = 0.

Proof. The proof of the lemma is given in Jain et al. (2019). Here λ is trace decay parameter and δt,π is the 1-step TD
error.

Theorem 1. The Bellman equation for the variance in the return from a given augmented state-action pair is:

σπ,µ(z, a) = Eπ,µ
[
δ2
t,π + γ̄σπ,µ(Zt+1, At+1)

∣∣Zt = z,At = a
]

(2)

where γ̄ = γ2 and δt is the 1-step TD error.

Proof. On expanding Gt,π,µ −Qπ,µ(z, a),

Gt,π,µ −Qπ,µ(z, a) =Rt+1 + γGt+1,π,µ −Qπ,µ(z, a)

=Rt+1 + γ
∑
z′,a′

P (z′|Zt, At)πθ(a′|z′)Qπ,µ(z′, a′)−Qπ,µ(z, a)

+ γ{Gt+1,π,µ −
∑
z′,a′

P (z′|Zt, At)πθ(a′|z′)Qπ,µ(z′, a′)}

=δt + γ
(
Gt+1,π,µ − Eπ,µ[Qπ,µ(Zt+1, At+1)|Zt = z,At = a]

)
(3)

Similar to Jain et al. (2019), let the variance for the augmented state-action pair be given as:

σπ,µ(z, a) =Eπ,µ
[
(Gt,π,µ − Eπ,µ[Gt,π,µ|Zt = z,At = a])2|Zt = z,At = a

]
=Eπ,µ

[
(Gt,π,µ −Qπ,µ(z, a))2|Zt = z,At = a

]
=Eπ,µ

[(
δt + γ(Gt+1,π,µ − Eπ,µ[Qπ,µ(Zt+1, At+1)|Zt = z,At = a])

)2

|Zt = z,At = a
]

=Eπ,µ
[
δ2
t |Zt = z,At = a

]
+ γ2 Eπ,µ

[
(Gt+1,π,µ − Eπ,µ[Qπ,µ(Zt+1, At+1)|Zt = z,At = a])2|Zt = z,At = a

]
+ 2γ Eπ,µ

[
δt(Gt+1,π,µ − Eπ,µ[Qπ,µ(Zt+1, At+1)|Zt = z,At = a])

]
(4)

Using the Lemma 1, by substituting ρ, λ = 1 and changing the state S as an augmented state Z, the third term in the
above (4) goes to 0. This leads the variance to σπ,µ(z, a) = Eπ,µ

[
δ2
t,π + γ̄σπ,µ(Zt+1, At+1)

∣∣Zt = z,At = a
]
.

The new safe objective function is defined as:

J(Θ) = Ez∼d
[
QΘ(z)− ψz σΘ(z)

]
,

where d describes the initial state-option distribution and ψz is the regularizer for the variance penalty term which is a
function of the augmented state space.
Theorem 2. (Safe Intra-Option Policy Gradient Theorem) Given Markov options, πw,θ policy differentiable in parameter θ, the
gradient of the objective function J w.r.t. θ starting from state s and option w is:

∇θJ(Θ) = Ed,Θ[
∑
a

∇θπθ(a|Zt)
(
Qπ,µ(Zt, a)− ψZt σπ,µ(Zt, a)

)
]

Proof. The gradient of the σΘ(z) w.r.t. θ is calculated in a similar fashion as the gradient ofQΘ(z) w.r.t. θ in the Intra-option
Policy Gradient Theorem (Bacon et al., 2017).

The gradient update for the intra-option policy moves in the direction to maximize the mean return value and minimize
the variance in the return.
Theorem 3. (Safe Termination Gradient Theorem) Given Markov options, βw,ν termination function differentiable in parameter ν,
the gradient of the objective function J w.r.t. ν starting from state s and option w is:

∇νJ(Θ) = Ed,Θ[−∇νβν(St+1,Wt)
(
Aπ,µ,Q(St+1,Wt)− ψz Aπ,µ,σ(St+1,Wt)

)
]

where Aπ,µ,σ(St+1,Wt) = σΘ(St+1,Wt)− σΘ(St+1) is the advantage function for the variance similar to the value function.

2



Proof. The gradient of the σΘ(z) w.r.t. ν is calculated in a similar fashion as the gradient ofQΘ(z) w.r.t. ν in the Termination
Gradient Theorem (Bacon et al., 2017).

Similar to the Option-Critic, when the advantage of the value function is positive for an option, the gradient for the
termination descends. On the other hand, the positive advantage function for the variance makes the gradient update
for the termination ascent. It matches with the intuition, when the variance of an option is higher than the average
variance, it would be desirable to terminate the option and choose a better option with a lower variance.
Theorem 4. (Safe Policy over Options Gradient Theorem) Given Markov options, µκ policy over options differentiable in parameter
κ, the gradient of the objective function J w.r.t. κ starting from state s and option w is:

∇κJ(Θ) = Ed,Θ[βν(St+1,Wt)
∑
w′

∇κµκ(w′|St+1)
(
QΘ(z′)− ψz′ σΘ(z′)

)
]

Proof. Let 1-step augmented state transition using (1) be: P (1)
γ̄ (Zt+1|Zt)

def
= γ̄

∑
a πθ(a|Zt)P (Zt+1|Zt, a). Similarly, the

k-step transition would be defined as: P (k)
γ̄ (Zt+k|Zt)

def
= P

(1)
γ̄ (Zt+k|Zt+k−1) × P

(k−1)
γ̄ (Zt+k−1|Zt). The gradient of the

variance w.r.t. κ parameter following (2),

∇κσΘ(z) =∇κ
[∑

a

πθ(a|z)γ̄
∑
s′

P (s′|s, a)
[
(1− βν(s′, w))σΘ(s′, w) + βν(s′, w)

∑
w′

µκ(w′|s′)σΘ(s′, w′)
]]

=
∑
a

πθ(a|z)γ̄
∑
s′,w′

P (s′|s, a)
[
(1− βν(s′, w)1w=w′ + βν(s′, w)µκ(w′|s′)]∇κσΘ(s′, w′)

+
∑
a

πθ(a|z)γ̄
∑
s′,w′

P (s′|s, a)βν(s′, w)
∑
w′

∇κµκ(w′|s′)σΘ(s′, w′)

=

∞∑
k=0

∑
z′

P
(k)
γ̄ (z′|z)

∑
a′

πθ(a
′|z′)

∑
s′′

γ̄P (s′′|s′, a′)βν(s′′, w′)
∑
w′′

∇κµκ(w′′|s′′)σΘ(s′′, w′′)

Similarly, the gradient of the QΘ(z) value function can be derived similarly, leading to the proof.

The above theorem states that the gradient of the policy over the options is updated in the direction of maximizing the
expected Q-value and minimizing the variance function achieved from all other possible options after termination of the
current option.

4 Experiment

Grid-World: We experiment in the classic grid-world four rooms (FR) environment (Bacon et al., 2017). To test safety, we
created a variable reward frozen patch (F ) in one of the hallway generated fromN (0, 8) distribution. The rest of the states
are given a 0 reward. Agent receives a reward of 50 on reaching the goal (G) (See Fig. 1a). γ is kept as 0.99. The step size of
value function, variance function, intra-option policy, termination, policy over options are 1.0, 2e−3, 1e−3, 5e−3, 1e−4
respectively for both option-critic (ψz = 0) and safe option-critic (ψz = 0.5) ∀z ∈ Z. Fig. 1b and Fig. 1c depict the
performance in the FR environment.

(a) Environment (b) Learning curve (c) Absolute TD error

Figure 1: Performance in the FR: Shows the performance averaged over 50 trials where the vertical bands depict the std.
dev.. Shows b ) the return, and c) sum of the absolute TD error. The safe policy (red) has a smaller standard deviation as
compared to the baseline (black) signifying safety helps an agent to avoid variance inducing regions.

Continuous State-Action Space: Here we performed the experiments in Mujoco environments to test the real-world use
case of introducing safe trajectories while learning in an environment. We implemented our safe algorithm over existing
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proximal policy option-critic (PPOC) (Klissarov et al., 2017). We compare the performance of the agent using both the
baseline PPOC and Safe-PPOC in Fig. 2. The videos1 compare the performance of the agent using both the algorithms in
the Mujoco environments.

(a) Half Cheetah (b) Humanoid Standup (c) Ant

Figure 2: Performance in Mujoco: Learning curve average over 10 runs where vertical bands depict the std. dev.. The
vertical bars at right most corner display the std. dev. in performance over the last 50 iterations. The variance regularized
PPOC (ψ > 0) helps in reducing the variation across multiple seed values leading to a more consistent performance.

5 Conclusion & Future Work

This work aims to introduce the constraint over the variance in return to the existing option-critic architecture in order
to incorporate responsible behavior in the risk-sensitive domains. Firstly, we propose a direct estimator of the variance
in the hierarchical policy framework. Then, we establish a method to learn a safe and reliable policy in option-critic,
which uses the above direct estimator of the variance to avoid unpredictably behaving regions. The above framework
is generic, which makes no assumption about the environment, making it a simple strategy to combine with the current
policy gradient techniques. The future work is to experiment with more different environments like Atari to understand
the scalability of the safe algorithm.
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