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Abstract

With the potential of Artificial Intelligence
(AI) to transform the society, focusing on the
safety perspective is a critical part of design-
ing any AI application. In this paper we pro-
pose a safe policy learning framework in the
actor-critic style. We base the safety criteria on
regularizing the variance of return in a learned
policy. We estimate the variance of λ-return
directly using temporal difference (TD) ap-
proach (Sherstan et al., 2018). We first demon-
strate the effectiveness of our approach in the
four rooms grid world environment, and then
present the results on four environments with
continuous action tasks in Mujoco domain us-
ing distributed proximal policy optimization
(DPPO) framework. The proposed algorithm
outperforms the baselines in all the environ-
ments with a significant reduction in the stan-
dard deviation of the scores.

1 INTRODUCTION

Reinforcement Learning (RL) agents learn by optimiz-
ing the long term returns (Sutton & Barto, 1998). Usu-
ally, optimizing the long-term returns lead to optimal
performance, but they do not necessarily always lead to
the most desired behavior. For example in settings like
robotics, industrial automation, self-driving cars, etc. en-
suring safety of the agent and minimizing the risk in re-
turns is as important as ensuring a good performance of
the agent. The definition of safety could cover a broad
spectrum of areas like transparency, ethics, risk, fairness,
etc. In this work, we are limiting our definition of safety
to one defined by (Amodei et al., 2016): minimizing the
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unintentional or harmful behavior of the agent due to
poor designing of the real world AI systems.

The concept of safety in AI - risk reduction - has been
treated in RL in a number of ways. In RL literature, the
most common way of incorporating safety is by gener-
ating risk-aware systems. The risk-aware decision mak-
ing by the agent is usually introduced by optimizing for
the worst case scenario (Heger, 1994; Gaskett, 2003),
adding probability of visit to the erroneous states as a
part of optimality criteria (Geibel & Wysotzki, 2005),
etc. Another class of work use different strategies to ex-
plore the state space with risk-averse behavior like ex-
ploration with controllability as a constraint (Gehring &
Precup, 2013; Law et al., 2005), using prior knowledge
for safe exploration or seeking guidance to learn from
human demonstrations (Abbeel et al., 2010; Koppejan
& Whiteson, 2011; Tang et al., 2010; Torrey & Taylor,
2012). (Garcıa & Fernández, 2015) provides a compre-
hensive survey on different safety strategies in RL. Re-
cent work on the optimal designing of the reward func-
tion (Hadfield-Menell et al., 2016) through Inverse RL
tries to handle the problem of reward mis-specification
in the environment. Concrete problems in AI Safety
(Amodei et al., 2016) classifies the safety problems in
five broad categories: avoiding the negative side effects,
safe exploration, reward hacking, robustness in terms of
shift in the distribution of the environment and providing
scalable oversight. There are many different approaches
to incorporate the safety in AI. In this work, we are deal-
ing with safety problems in a constraint-based optimiza-
tion setting where constraints are introduced to have bet-
ter optimization strategies while learning a safe policy.

(Sato et al., 2001; Tamar et al., 2013; 2012; Prashanth &
Ghavamzadeh, 2013) focus on estimating the variance of
λ-return using indirect methods or the second-order mo-
ment methods to limit the risk inducing decisions. (Sher-
stan et al., 2018) recently came up with a direct estima-
tion of the variance in λ-return using a Bellman operator
in policy evaluation methods. In this work, we propose a



direct method of estimating the variance of λ-return sim-
ilar to that of (Sherstan et al., 2018) in actor-critic style
methods.

Key Contributions: In this work we integrate the no-
tion of safety in an actor-critic style architecture to pro-
pose the Safe Actor-Critic (safe-AC) framework. This
framework provides an automatic approach to learn a
safe policy. We extend the work on a direct approach
to estimate the variance of the λ-return (Sherstan et al.,
2018) to actor-critic style approaches to directly learn a
safe policy. We derive a policy-gradient theorem for the
safe-AC framework which would help the agent to avoid
the states with inconsistent behavior. We show the ad-
vantage of the safe-AC framework in a grid-world and
four Mujoco environments: Hopper, Half Cheetah, Ant
and Walker. Our approach outperforms state-of-the-art
DPPO framework (Heess et al., 2017) in all the envi-
ronments. To conclude, we propose a Safe Actor-Critic
framework to be used in future safety-critical applica-
tions.

2 PRELIMINARIES

In a Markov Decision Process (MDP) setting, an agent
interacts with the environment in discrete time steps de-
noted by t ∈ {1, 2, 3, ...}. At each time step t, the agent
takes an action a ∈ A, goes from state st to state st+1,
and receives a reward rt+1 from the environment. The
states are drawn from s ∈ S. The reward is defined as
r : S × A → R. The environment transitions according
to P (st+1|st, at), where P : S × A × S → [0, 1]. The
policy π gives the probability of taking an action a ∈ A
in a state s as π(a|s). An MDP is represented by the tuple
(S,A, P, r, γ), where γ ∈ [0, 1] is a discount factor. The
value of a state under a policy π is Vπ(s) = Eπ[Gt|st =
s] = Eπ[

∑∞
l=0 γ

lrt+l+1|st = s] where Gt represents
the discounted return at time t. Similarly, the value of
taking an action a in state s and thereafter following pol-
icy π is given by Qπ(s, a) = Eπ[Gt|st = s, at = a].
The value of a state can also be learned in an incre-
mental fashion using TD(λ) learning method (Sutton &
Barto, 1998). In a one-step TD approach, the Q value
is updated as Q(st, at) ← Q(st, at) + αδt, where δt
is the TD error at time t and α is the step size of the
update. In Sarsa (Rummery & Niranjan, 1994; Sut-
ton, 1996) style algorithm, the TD(0) error is given by
δt = rt+1 + γQ(st+1, at+1)−Q(st, at).

2.1 ACTOR-CRITIC

The policy gradient method (Sutton et al., 2000) provides
an approach to select an action in a state according to a
parameterized policy without consulting the value func-

tion of a state. Though one can learn the value function,
learning the policy is sufficient to select an action at each
state. The parameterized policy is given by π(a|s,θ),
where θ is the parameter of the policy. The objective
function is to maximize the expected discounted return
which is defined as Jπ(θ) = E[

∑∞
t=0 γ

trt+1|π]. The
gradient with respect to the policy parameter θ is given
as:

∂Jπ(θ)

∂θ
=
∑
s

dπ(s)
∑
a

∂π(a|s, θ)
∂θ

Qπ(s, a) (1)

where dπ(s) =
∑∞
t=0 γ

tP(st = s|s0 , π) is the dis-
counted weighting of states with the starting state as s0.
The update for the θ parameter is given by:

θt+1 ← θt + αγt∇log(π(at|st, θ))Gt (2)

The above update of θ is known as REINFORCE, a
Monte Carlo approach for updating the policy parame-
ters. To overcome the shortcomings of REINFORCE,
the actor-critic (Sutton et al., 2000; Konda & Tsitsiklis,
2000) method was introduced which usually learns faster
than REINFORCE. The actor refers to the learned policy
and the critic refers to the learned state value function.
The one-step actor-critic update of the policy parameter
is given as:

θt+1 = θt + α(Gt:t+1 − V (st, w))∇ log(π(at|st, θ))
= θt + αδt∇ log(π(at|st, θ)) (3)

where, V (st, w) is the estimate of a state value func-
tion parameterized byw andGt:t+1 is estimated by boot-
strapping with next step state value function.

3 SAFE ACTOR-CRITIC MODEL

To enforce safety while learning a policy in the actor-
critic framework, we extend the idea of directly estimat-
ing the variance of λ-return using the TD method (Sher-
stan et al., 2018) via a Bellman operator. Higher the vari-
ance of the return of a state, higher would be the uncer-
tainty in the value of that state. The objective is to max-
imize the expected return starting from an initial state
distribution with a regularization on the variance of the
return. Using this approach, one could make any pol-
icy risk-averse or risk-seeking based on the regulariza-
tion constant ψ controlling the variance in the return of
a state. Initially the estimates for both, the state-action
values and the variance estimate would be poor. Even-
tually as both the estimates improve, the policy would
learn to avoid visiting states causing inconsistency in the
performance.

We extend on the derivation of estimating the variance
of λ-returns directly from (Sherstan et al., 2018). For



the sake of completeness and consistency in notation,
we show the derivation of the variance of returns again
(Equation (8)) including Lemma 1. Following this, we
derive a novel actor-critic style theorem for the new
objective function, Equation (9): maximizing the dis-
counted return with constraints on the variance of the
return.

Let Gλt be the future λ-return for estimating the value of
state st. Let γ be the discount factor and Vπ(s) be the
value of a state s.

Gλt = rt+1 + γ(1− λ)Vπ(st+1) + γλGλt+1 (4)

Let the σ(s) denote the variance in the λ-return starting
from state s and is given by the following equation.

σ(s) = Eπ[(Gλt − Eπ[Gλt ])2|st = s] (5)

As Eπ[Gλt |st] = Vπ(st), simplifying (5):

Gλt − Eπ[Gλt ] = Gλt − Vπ(st)

= rt+1 + γ(1− λ)Vπ(st+1) + γλGλt+1

− Vπ(st)

= δt + γλ(Gλt+1 − Vπ(st+1)) (6)

Here, δt = rt+1 + γVπ(st+1)− Vπ(st). When substitut-
ing (6) in (5), the variance is reduced to:

σ(s) = Eπ[(δt + γλ(Gλt+1 − Vπ(st+1)))2|st = s]

= Eπ[δ2
t |st = s]

+ γ2λ2Eπ[(Gλt+1 − Vπ(st+1))2|st = s]

+ 2γλEπ[δt(G
λ
t+1 − Vπ(st+1))|st = s]

= Eπ[δ2
t + γ2λ2σ(st+1)|st = s] (7)

In (7), Eπ[δtγλ(Gλt+1 − Vπ(st+1))|st = s] = 0 follows
from Lemma 1.
Lemma 1. The Eπ[δtγλ(Gλt+1−Vπ(st+1))|st = s] = 0
given δ(st, at, rt+1, st+1) function.

Proof. By the law of total expectation:

Eπ[ δtγλ(Gλt+1 − Vπ(st+1))|st=s ] =

Eπ
[
Eπ[δtγλ(Gλt+1 − Vπ(st+1))|st, at,

rt+1, st+1]|st=s
]

Given (st, at, rt+1, st+1), δt and (Gλt+1 − Vπ(st+1) be-
come conditionally independent of each other. Therefore
they can be separated into two different expectations,
simplifying the above equation to:

Eπ[δtγλ(Gλt+1 − Vπ(st+1))|st, at, rt+1, st+1] ={
Eπ[δt|st, at, rt+1, st+1]

× γλEπ[(Gλt+1 − Vπ(st+1))|st, at, rt+1, st+1]
}

As Eπ[(Gλt+1 − Vπ(st+1))|st, at, rt+1, st+1] = 0, the
whole term becomes 0, following the argument of the
lemma.

Substituting γ̄ = γ2λ2 in (7), the bellman equation for
σ(s) is expressed as:

σ(s) = Eπ[δ2
t + γ̄σ(st+1)|st = s] (8)

The aim is to maximize the expected discounted re-
turn and minimize the variance of the return. Let θ be
the parameters of a stochastic and differentiable policy
π(a|s, θ). We define the objective function J as,

J(θ) = Es0∼d[V (s0)− ψσ(s0)] (9)

Here d is the initial state distribution and ψ ∈ R is the
regularizer for controlling the amount of the variance.
The Equation (9) can also be interpreted as maximiza-
tion of the expected discounted return with a soft con-
straint on the variance of return. One could also easily
change this optimization function to have a hard bound
on the variance of return. Let σ(s, a) be the variance de-
fined at a given state-action pair. The variance of a state
is defined in terms of variance of a state-action pair as
σ(s) =

∑
a π(a|s, θ)σ(s, a). Using Equation (8), the

σ(s, a) is defined as:

σ(s, a) = δ(s, a)2 + γ̄
∑
s′

P (s′|s, a)σ(s′) (10)

Here, the TD error of a state-action pair is given as
δ(s, a) = r(s, a)+γ

∑
s′ P (s′|s, a)V (s′)−Q(s, a). We

will now compute the gradient of J (9) w.r.t. to the pol-
icy parameter θ. We first derive the gradient of σ w.r.t. θ.
Unless specified, the gradient is assumed to be w.r.t. θ.

Using (10), the gradient of σ(s) is as follows:

∇θσ(s) =
∑
a

∇θπ(a|s, θ)σ(s, a)

+
∑
a

π(a|s, θ)∇θσ(s, a)

=
∑
a

∇θπ(a|s, θ)σ(s, a)

+
∑
a

π(a|s, θ)
[

2δ(s, a)∇θδ(s, a)

+ γ̄
∑
s′

P (s′|s, a)∇θσ(s′)
]

(11)

In (11),
∑
a π(a|s, θ)∇θδθ(s, a) = Eπ[∇θδ(s, a)]. In

expectation, the gradient of the TD error is zero after the



policy converges. Therefore (11) is reduced to:

∇θσ(s) =
∑
a

∇θπ(a|s, θ)σ(s, a)

+ γ̄
∑
a

π(a|s, θ)
∑
s′

P (s′|s, a)∇θσ(s′)

(12)

Let the discounted probability of going from state st to
st+1 in one time step be given by:

P
(1)
γ̄ (st+1|st) = γ̄

∑
at

π(at|st, θ)P (st+1|st, at)

Therefore, the discounted probability of reaching st+k
from state st in k time steps is given by:

P
(k)
γ̄ (st+k|st) =

∑
st+1

P
(1)
γ̄ (st+1|st)P (k−1)

γ̄ (st+k|st+1)

Equation (12) is further reduced as following:

∇θσ(s) =
∑
a

∇θπ(a|s, θ)σ(s, a)

+
∑
s′

P
(1)
γ̄ (s′|s)∇θσ(s′)

=
∑
s′

∞∑
k=0

P
(k)
γ̄ (s′|s)

∑
a′

∇θπ(a′|s′, θ)σ(s′, a′)

=
∑
s′

µ̄(s′|s)
∑
a′

∇θπ(a′|s′, θ)σ(s′, a′) (13)

where µ̄(s′|s) is the discounted weighting of the states
along the trajectory from an initial state s: µ̄(s′|s) =∑∞
k=0 γ̄

kP (s′|s).

Using the policy-gradient approach (Sutton et al., 2000),
the gradient of V (s) is given by:

∇θV (s) =
∑
s′

µ(s′|s)
∑
a′

∇θπ(a′|s′, θ)Q(s′, a′)

(14)

where µ(s′|s) is the discounted weighting of states
along the trajectory from an initial state s: µ(s′|s) =∑∞
k=0 γ

kP (s′|s).

Using (9), (13) and (14), the gradient of the objective
with respect to the parameters θ of the policy π with an
initial state s0 is given by:

∇θJ =
∑
s′

{
µ(s′|s0)

∑
a′

∇θπ(a′|s′, θ)Q(s′, a′)

− ψµ̄(s′|s0)
∑
a′

∇θπ(a′|s′, θ)σ(s′, a′)
}

(15)

A prototype implementation of the safe actor-critic is
given in Algorithm 1.

Algorithm 1 Safe Actor-Critic with linear function ap-
proximation Q-learning

Here αc, αθ, ασ stand for the step size of the critic, the
differentiable policy π(a|s, θ) and the differentiable
state-action variance σ(s, a,z). ψ is a regulariza-
tion parameter for variance in returns. Here γ̄ = γ2λ2.

Input: Let Q(s, a,w) be a state-action value parame-
terization, ∀s, a where s ∈ S, a ∈ A
Input: Let σ(s, a,z) be a state-action variance param-
eterization, ∀s, a where s ∈ S, a ∈ A

Initialize policy parameters θ, state-action value
weights w and state-action variance weights z.
Get initial s from S.
repeat
a ∼ π(.|s, θ) using soft-max policy
Observe {r, s′}
if s′ is non-terminal state then
δ ← r + γmaxa′ Q(s′, a′,w)−Q(s, a,w)
δ̄ ← δ2 + γ̄mina′ σ(s′, a′, z)− σ(s, a,z)

else
δ ← r −Q(s, a,w)
δ̄ ← δ2 − σ(s, a,z)

end if
w ← w + αc δ∇θQ(s, a,w)
z ← z + ασ δ̄∇θσ(s, a,z)

θ ← θ+αθ
∂ log(π(a|s,θ))

∂θ

[
Q(s, a,w)−ψ σ(s, a,z)

]
s← s′

until s′ is a terminal state

4 EXPERIMENTS

4.1 GRID WORLD

First, we consider a navigation task in a two dimensional
grid environment using a variant of the four rooms do-
main as described in (Sutton et al., 1999). As seen in the
Fig. 1, we define some slippery frozen states in the en-
vironment which are unsafe to visit. We accomplish this
by introducing a variability in their rewards.

The action taken by the agent in the environment is any
among up, down, left, and right. Agent can be initialized
randomly from any state in the environment except the
goal state. The stochasticity in the environment is intro-
duced by choosing a random action with 0.2 probability.
The agent has to navigate to the goal state depicted by G
in Fig. 1 where lightly shaded states depict the walls. The
agent remains in the same state with a reward of 0 if the
agent hits the wall. A reward of 0 and 50 is given to the
agent while transitioning to the normal and the goal state
respectively. Rewards for the unsafe states are drawn



Figure 1: Four Rooms Environment: F and G depicts
the unsafe frozen and the goal states respectively. The
dark color represents the normal states whereas the light
color represents the wall.

Table 1: Parameters for Grid World: Optimized pa-
rameters for four rooms grid world environment

ψ αθ αc ασ γ λ temp
0.0 0.01 0.1 - 0.99 0.99 0.05
0.25 0.01 0.25 0.01 0.99 0.99 0.05

uniformly from [−15, 15] when the agent transitions to
a slippery state. The expected value of the reward for the
normal and the slippery states is kept same.

In the safe actor-critic architecture, we learn a policy
with a Boltzmann distribution. We optimize for the fol-
lowing hyper-parameters: temperature; step sizes of the
actor, critic and variance of return (σ); ψ regularizer. The
hyper-parameters were optimized for both cases: vanilla
AC and safe-AC. The optimal performance of the safe-
AC was achieved with a ψ value of 0.25 (Fig. 2). The
parameter setting is shown in Table 1. The results were
achieved with total of 4000 episodes averaged over 50
trials. The agent was permitted to take a maximum of
500 steps in an episode. The episode finishes when ei-
ther the maximum steps are taken or the agent reaches
the goal state.

To evaluate these experiments, we consider the follow-
ing metrics: sample trajectories, discounted return over
episodes, the optimal policy and density of state visits. It
can be observed from Fig. 2 that safe-AC has a reduced
standard deviation in the discounted return of an episode
as compared to that of vanilla AC. This graph highlights
the fact that the safety constraints help the agent in avoid-
ing the visit to the unsafe region (inducing variability in
the return). Lesser the visits to variable reward induc-
ing regions in the environment, less would be the fluc-
tuations in the value function which helps in the faster
learning of safe-AC agent. To validate that the learn-
ing with safety causes fewer visits to the unsafe state,
we visualize with state frequency graph depicted in the

Figure 2: Learning curve in Four Rooms Environ-
ment: Averaged return over 50 trials in four room envi-
ronment. The bands around solid lines represent the stan-
dard deviation of the return. The experiment with safety
(red) has a smaller standard deviation in the observed re-
turn as compared to the one without safety (black).

Fig. 3. It is observed that safe-AC has lower frequency
of visit to the unsafe (F ) states as opposed to the vanilla
AC. The Fig. 4 shows the converged optimal policy on
the four rooms grid world domain. For the safe-AC, the
policy around the frozen path tries to get the agent out
of the patch as compared to one without safety which
makes the agent pass through the frozen hallway in order
to reach the goal state with the shortest possible distance.
The sampled trajectory from both the vanilla AC and the
safe-AC is shown in Fig. 5. Regardless of the start state,
the safe-AC agent navigates to the goal state avoiding the
states with a highly varied rewards as opposed to the AC
agent which finds a shortest route to the goal state.

4.2 MUJOCO ENVIRONMENT: CONTINUOUS
ACTIONS

In this section, we discuss about the performance of safe
framework on the continuous actions task in Mujoco
environment in OpenAI Gym (Brockman et al., 2016)
namely: Hopper, Half Cheetah, Ant and Walker. We
use the distributed proximal policy optimization (DPPO)
framework (Heess et al., 2017) as our baseline for learn-
ing the safe actions for a non-linear function approxima-
tion setting. DPPO is a distributed version of proximal
policy optimization (PPO) algorithm (Schulman et al.,
2017) where the data and the gradient is computed in a
distributed fashion. DPPO unlike trust region policy op-
timization (TRPO) (Schulman et al., 2015a) relies on the
first order gradients, making it convenient to use for the
large-scale problems.

Incorporating safety in the DPPO framework results into



(a) AC (ψ = 0) (b) Safe-AC (ψ = 0.25)

Figure 3: State frequency in Four Rooms Environ-
ment: Density graph represents number of times a state
was visited during testing over 80 testing trials. Darker
shade represents higher density. a) Model without safety
has equally likely density for both the hallways and visits
frozen region. b) Model with safety shows higher density
for path without frozen states.

(a) AC (ψ = 0) (b) Safe-AC (ψ = 0.25)

Figure 4: Convergence of Optimal Policy in Four
Rooms Environment: The graph shows greedy policy
corresponding to the objective function. a) AC without
safety shows policy passing through frozen hallway (pur-
ple region). b) Safe-AC shows policy dispersing away
from frozen hallway, forcing the agent to avoid unsafe
region.

computation of additional terms for the variance of a
state. We parameterize the variance with z, and the
learned approximation is represented by σ(s, z) for ∀s ∈
S. A separate neural network is built to estimate the vari-
ance of a state. The target estimate of variance is given
by R̂σ(t) =

∑∞
l=0 γ̄

lδ2
t+l, where δt is the one-step TD er-

ror at time t. We used a generalized advantage estimator
(GAE) (Schulman et al., 2015b) to estimate an exponen-
tially weighted average of the k-step advantage estimator
for both value and variance functions. Let the one-step
error in variance be given by:

δ̄σt = δ2
t + γ̄σ(st+1, z)− σ(st, z) (16)

Following the notations and the derivations of Schulman

(a) AC Policy (ψ = 0) (b) AC Policy (ψ = 0)

(c) Safe-AC Policy
(ψ = 0.25)

(d) Safe AC Policy
(ψ = 0.25)

Figure 5: Policy in Four Rooms Environment: Learned pol-
icy where S and G represents start & goal state. {R,L,U,D}
denotes the 4 actions agent takes according to the learned
stochastic policy. Purple patch represent the frozen states. a) &
b) shows the two sampled policy with ψ = 0 passing through
the frozen area. c) & d) depicts policy learned with ψ = 0.25
avoiding the frozen hallway due to the safety constraints.

et al. (2015b), the GAE for variance is described as:

A
GAE(γ̄,λ)
σ(t) =

∞∑
l=0

(γ̄λ)lδ̄σt+l (17)

There are two special cases for GAE that follow when
λ = {0, 1}.

A
GAE(γ̄,0)
σ(t) = δ̄σt = δ2

t + γ̄σ(st+1, z)− σ(st, z) (18)

A
GAE(γ̄,1)
σ(t) =

∞∑
l=0

γ̄lδ̄σt+l =

∞∑
l=0

γlδ2
t+l − σ(st, z) (19)

where δ̄σt is the one-step variance error given in (16). The
GAE for the value function is given as:

A
GAE(γ,λ)
V (t) =

∞∑
l=0

(γλ)lδt+l (20)

For calculating the safe objective function J , results in
an additional term for minimizing an advantage function
of the variance. The objective function JDPPO(θ) fol-



Figure 6: Learning curve in Half Cheetah Environ-
ment: Graph depicts the score over 20 different trials
with random seeds. The bands represent the standard de-
viation of score across the different trials. With ψ = 0.15
(safe), agent performs better than vanilla DPPO (ψ = 0)
in terms of improved mean score along with significant
reduction in the standard deviation (compare red and
black curve).

lowing Heess et al. (2017) becomes:

JDPPO(θ) =

T∑
t=1

{ πθ(at|st)
πold(at|st)

× (A
GAE(γ,λ)
V (t) − ψAGAE(γ̄,λ)

σ(t) )
}

− λKL[πold|πθ]
− εmax(0,KL[πold|πθ]− 2KLtarget)

2

(21)

where ψ is the regularizer for the variance and
A
GAE(γ̄,λ)
σ(t) is GAE for the variance following Equation

(17). The additional terms in the objective function is
due to the constraints on the KL divergence of old and
new policy similar to the PPO algorithm. Apart from
that the squared loss for the neural network of variance
is maximized as:

Lσ(z) = −
T∑
t=1

(
R̂σ(t) − σ(st, z)

)2
The gradient of Lσ is used to update the variance param-
eter z. The code for the safe-DPPO would be available
on request.

4 Mujoco Environments are used to evaluate the per-
formance of the safe-DPPO algorithm: Half Cheetah,
Hopper, Walker and Ant environment. The baseline im-
plementation of DPPO is taken from the public Github
repository1. The results are optimized for varying ψ. For

1Code for DPPO available at https://github.com/
sanjaythakur/trpo

Figure 7: Learning curve in Ant Environment: Graph
depicts the score over 5 different trials with random
seeds. The bands represent the standard deviation of
score across different trials. The safe architecture with
ψ = 0.1 leads to much better mean performance with a
reduction in the standard deviation of the score.

Table 2: Mujoco Final Score: The table shows the av-
erage performance of vanilla DPPO compared with safe-
DPPO (best ψ values) in the training phase. The best per-
formance in terms of the highest mean score and the low-
est standard deviation in score is highlighted by a box.

Env. Vanilla DPPO Safe-DPPO
Half Cheetah 3614.3 (±1424) 4256 (±1002)

Hopper 3688.9 (±163) 3749.5 (±153)

Ant 808.7 (±554) 2342.1 (±360)

Walker 6506.5 (±1121) 6191.5 (±857)

evaluating the performance of the framework, we used
the learning curve and the averaged performance over the
last 200 episodes in the training phase.

Figures 6, 7, 8 and 9 show the performance of the agent
averaged over the multiple runs (mentioned below their
respective graphs) for the 4 Mujoco environments. In
Half Cheetah, Hopper and Ant, the safe-DPPO performs
better in terms of the mean score and significant reduc-
tion in the standard deviation of score over the trials
when compared to the vanilla DPPO algorithm. The best
performing ψ values of the respective environments are
mentioned below their learning curve plots. In Fig. 9
of the Walker environment, although adding safety does
not lead to an improvement in the mean score, but safety
leads to a significant reduction in the standard deviation
of the score. Adding the constrained objective of min-
imizing the variance of the return not only leads to im-
proved performance of the agent in this environment but

https://github.com/sanjaythakur/trpo
https://github.com/sanjaythakur/trpo


Figure 8: Learning curve in Hopper Environment:
Graph depicts the score over 15 different trials with
random seed. The bands represent the standard devia-
tion of score across different trials. Adding safety (best
ψ = 0.075) leads to small gain in the mean score along
with small amount of reduction in the standard deviation.

also encourages the agent to take steps inducing consis-
tent behavior, thus avoiding risk. The intuition behind
the success of safe-DPPO is that by adding constraints on
safety, agents becomes risk-averse, thus increasing their
life-span. This leads an agent to have a faster learning
through safe-DPPO as compared to vanilla DPPO due to
increased longevity with a consistent performance. Ta-
ble 2 shows the comparison of agent’s performance in
safe-DPPO framework with DPPO in all the 4 environ-
ments. Only the best ψ value performance in safe-DPPO
is compared with ψ = 0 (vanilla DPPO). Table 2 re-
ports the mean score over the last 200 episodes in the
training phase along with the standard deviation in the
scores. Introducing safety in the DPPO algorithm boosts
the performance of agents in all the 4 environments ei-
ther in terms of improvement in mean or reduction in the
standard deviation of the score.

5 DISCUSSION

In this paper, we propose a new Safe Actor-Critic frame-
work to directly learn optimal policies while maintaining
the safety constraints. The underlying idea behind safety
is to get consistent performance from the agent, thereby
discouraging trajectories with high variance in the long-
term return. This would indeed reduce the involved risk
in the environment by executing the policies in a safe
manner. We constrain the variance of return to minimize
the visits to the unsafe regions in state space by using a
direct approach to estimate the variance using a Bellman
operator (Sherstan et al., 2018). This leads to a trade-off
between the mean and the variance of returns.

Figure 9: Learning curve in Walker Environment:
Graph depicts the score over 5 different trials with ran-
dom seeds. The bands represent the standard deviation
of score across the different trials. With safe-DPPO of
ψ = 0.075, the mean score drops, but overall confidence
of the score shown in the form of the standard deviation
boosts up in comparison to vanilla DPPO.

Variance in the return is mainly caused by the two fac-
tors, variability in dynamics of the environment and
stochastic nature of the policy. With every policy im-
provement step, there would be a greedification in the
behaviour of the policy. This eventually leads policy to-
wards a deterministic nature. Hence, after a period of
time, the variance in return would mainly reflect the en-
vironment stochasticity.

We demonstrate the effectiveness of our framework in
the discrete as well as the continuous settings. Our first
experiment with the four rooms environment exhibits the
interpretability of safety in a clear and simple manner.
With the safe framework, we evidently observe a better
performance with a reduction in the variance of return.
The second set of experiments with four Mujoco envi-
ronments prove the scalability of our framework in com-
plex continuous state-action settings. In the latter exper-
iments, the safe DPPO framework outperforms state-of-
the-art DPPO methods.

Future Work An interesting direction to explore would
be to study the effects of penalizing with variable ψ value
where it could start with 0 value and increase with time
rather than a constant ψ value over the entire trajectory.
This approach would promote exploration in the begin-
ning when the estimates of state-action value and vari-
ance are poor and later would curb the visitation to un-
safe or highly varied behaviour states. Another direct
extension of the work is to extend the idea of safety to
the off-policy actor critic methods which have extensive
use case in the real world applications like: stock-market
prediction, advertisement recommendation, etc.
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