

Safe Option-Critic: Learning Safety in the Option-Critic Architecture

Arushi JAIN, Khimya KHETARPAL, Doina PRECUP

Reasoning and Learning Lab (McGill University), Mila Lab, Montreal, Canada

Abstract

- Novel work on introducing safety in hierarchical reinforcement **learning** (Option-Critic architecture).
- Safety introduced by **regularizing variance in the TD error**.
- Demonstrate effectiveness of framework in tabular and Arcade Learning **Environments** (ALE).

Reinforcement Learning

In MDP, we have state $s \in S$, action $a \in A$, reward r, policy $\pi(a|s)$, transition probability P(s'|s, a) and discount factor γ .

Experiments: Four Rooms Grid World

Learning curve with 4 options averaged over 200 trials

- ► State-action value: $Q(s, a) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | s_{0} = s, a_{0} = a \right]$
- One-step temporal difference (TD) error: $\delta(s,a) = r(s,a) + \gamma P(s'|s,a) \pi(a'|s') Q(s',a') - Q(s,a)$

Options Framework

An option $\omega \in \Omega$ is a triple of:

- \blacktriangleright Initiation set: I_{ω}
- \blacktriangleright Internal policy: π_{ω}
- \blacktriangleright Termination condition: β_{ω}
- Let $\Theta = \{\theta, \nu\}$, where following represents parameter for:
- \triangleright θ : Internal policy $\pi_{\omega,\theta}$
- \triangleright ν : Termination condition $\beta_{\omega,\nu}$
- The intra-option Bellman update for Q value:

 $Q(s,\omega,a) = r(s,a) + \gamma P(s'|s,a) \{ (1 - \beta_{\omega,\nu}(s)) Q_{\Theta}(s',\omega) + \beta_{\omega,\nu}(s) V_{\Omega}(s') \}$

Safety Definition

Option Critic

Safe Option Critic Sampled Policies

Option Critic

Safe Option Critic State Frequency

Unintended or **harmful behavior** that may emerge from machine learning systems when we specify the wrong objective function, are not careful about the learning process, or commit other machine learning-related implementation errors. $\lfloor 1 \rfloor$

Our notion of safety -

Controllability: Negation of variance in the TD error, controlling uncertainty in the value of a state-option pair [2].

Contribution

Safe Option-Critic (SOC) framework provides a novel mechanism to learn end-to-end safe options in Option-Critic Architecture [3].

Derived a policy-gradient style update for a new safe objective function

 $\max_{\Theta} J(\Theta | d),$ where $J(\Theta|d) = \mathbb{E}_{(s_0,\omega_0)\sim d}[Q_\Theta(s_0,\omega_0) + \psi \ C_\Theta(s_0,\omega_0)]$

Here $C_{\Theta}(s_0, \omega_0) = -\mathbb{E}_{a \sim \pi_{\omega, \theta}(a|s)} \left[\delta^2(s, \omega, a) \right]$ is the controllability, ψ is the regularizer on controllability, d is initial state-option distribution.

ALE - MsPacman

Conclusion & Future Work

Results: Updates for Gradient

- Take better primitive action with regularization on minimizing variance in TD error.
- \blacktriangleright Gradient update for ν parameter of termination function of option $\mathbb{E}\left[\frac{\partial\beta_{\omega,\nu}(s')}{\partial \nu}(Q_{\Theta}(s',\omega)-V_{\Omega}(s'))\right]$ Termination condition is unaffected by addition of the controllability factor.

- Novel work to incorporate safety in end-to-end options learning.
- SOC framework is scalable to include non-linear function approximation. **Future Work**
- Using n-step return calculation (current work is one-step return).
- Notion of safety to different levels of hierarchy.

References

- [1] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané, "Concrete problems in Al safety," CoRR, 2016.
- [2] C. Gehring and D. Precup, "Smart exploration in reinforcement learning using absolute temporal difference errors," in Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS '13, pp. 1037–1044, 2013.
- [3] P.-L. Bacon, J. Harb, and D. Precup, "The option-critic architecture.," in AAAI, pp. 1726–1734, 2017.

