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» Novel work on introducing safety in hierarchical reinforcement
learning (Option-Ciritic architecture).

» Safety introduced by regularizing variance in the TD error.

» Demonstrate effectiveness of framework in tabular and Arcade Learning
Environments (ALE).

Reinforcement Learning

In MDP, we have state s € S, action a € A, reward r, policy 7(als), transition
probability P(s’|s, a) and discount factor .

» State-action value: Q(s,a) = E.[>. 2,7 'ri1lso =s,a = a]

» One-step temporal difference (TD) error:
0(s,a) = r(s,a) + yP(s']s,a) m(d'|s') Q(s’, &') — Q(s, a)

Options Framework

An option w € €2 is a triple of:
» Initiation set: [,

» Internal policy: 7,

» Termination condition: (3,

Let © = {6, v}, where following represents parameter for:
» 0: Internal policy 7, ¢
» v: Termination condition [3,,,

The intra-option Bellman update for Q value:

QR(s,w,a) =r(s,a) +yP(s'|s, a){(l — Buu(5))Qols’,w) + Buu(s) VQ(S/)}

Safety Definition

Unintended or harmful behavior that may emerge from machine learn-
ing systems when we specify the wrong objective function, are not careful
about the learning process, or commit other machine learning-related imple-
mentation errors. 1]

Our notion of safety -
Controllability: Negation of variance in the TD error, controlling uncer-
tainty in the value of a state-option pair [2].

Contribution

Safe Option-Critic (SOC) framework provides a novel mechanism to learn
end-to-end safe options in Option-Critic Architecture [3].

» Derived a policy-gradient style update for a new safe objective function

max J(©|d),

©
where J(©|d) =

Here Co(so,wp) = —
regularizer on control

Lo o(als) [52(5,w, a)] is the controllability, 1 is the
ability, d is initial state-option distribution.

Results: Updates for Gradient

Gradient update for / parameter of internal policy of option

4:[8 Iog(%ég(ab)) 9, log(ﬂgg(ao‘SO))¢52(507 wo. 20)]

Regularization Term

QU,@(Sawv a)

‘ake better primitive action with regularization on minimizing variance in
D error.

Gradient update for v parameter of termination function of option

43[65‘5;(5/)(62@(5’, w) — Vo(s'))]

Termination condition is unaffected by addition of the controllability factor.
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Conclusion & Future Work

» Novel work to incorporate safety in end-to-end options learning.

» SOC framework is scalable to include non-linear function approximation.
Future Work

» Using n-step return calculation (current work is one-step return).
» Notion of safety to different levels of hierarchy.
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