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Abstract

General Value Functions (GVFs) (Sutton et al, 2011) are an established way to
represent predictive knowledge in reinforcement learning. Each GVF computes the
expected return for a given policy, based on a unique pseudo-reward. Multiple GVFs
can be estimated in parallel using off-policy learning from a single stream of data,
often sourced from a fixed behavior policy or pre-collected dataset. This leaves an
open question: how can behavior policy be chosen for data-efficient GVF learning?
To address this gap, we propose GVFExplorer, which aims at learning a behavior
policy that efficiently gathers data for evaluating multiple GVFs in parallel. This
behavior policy selects actions in proportion to the total variance in the return
across all GVFs, reducing the number of environmental interactions. To enable
accurate variance estimation, we use a recently proposed temporal-difference-style
variance estimator. We prove that each behavior policy update reduces the mean
squared error in the summed predictions over all GVFs. We empirically demonstrate
our method’s performance in both tabular representations and nonlinear function
approximation.

1 Introduction

The ability to predict many different signals is a key attribute of human, animal, and likely artificial
intelligence too. In reinforcement learning (RL), a model of predictive knowledge that is grounded in
an agent’s sensory experience is formulated as General Value Functions (GVFs) (Sutton et al.,
2011). Each GVF is defined by a unique policy and pseudo-reward known as cumulant. GVFs
generalize the classic concept of a value function. They measure an agent’s expected cumulative
discounted value of cumulant, where the discount factor may vary as a function of state (instead
of being fixed). A significant subclass of GVFs focus on predicting these values for a given fixed
policy. These predictive GVFs can answer questions like: “How much time is there before the agent
hits a wall, given its current way of moving?” or “What is the probability of the agent to collect a
particular object in an allotted time, under a given policy” (White et al., 2015; Schlegel et al., 2021;
Sherstan, 2020).

As each GVF may be defined in terms of a unique policy-cumulant pair, this requires off-policy
learning to update all GVFs in parallel. Prior works have estimated GVF values by either using a pre-
collected datasets (Xu et al., 2022) or by following a fixed, randomized behavior policy (Sutton et al.,
2011). However, these methods can suffer from large value estimation errors if the behavior policy or
dataset is ill-suited for learning a particular GVF. Here, “ill-suited” means that the behavior policy
can be very different from the GVF policies or the behavior policy does not sufficiently visit regions
crucial for learning GVFs. Our work addresses this gap by focusing on the question of exploration
for evaluating GVFs: how can we adapt an agent’s behavior policy to strategically sample data for
multiple GVF evaluations in parallel? While exploration has been extensively studied in context of
optimal control in Markov Decision Processes (MDP), the question of constructing a policy that can
learn multiple quantities in parallel has remained largely untouched.
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To accurately evaluate multiple GVFs in parallel, we aim to design a behavior policy that minimizes
the overall mean squared error (MSE) in their predictions. An intuitive approach would be to follow
each GVF’s target policy for some period of time (e.g. one episode) in a round-robin manner, and
parallely update all GVFs off-policy. However, this approach can be highly data inefficient as actions
are sampled according to given policies, overlooking high-variability regions crucial for learning.
To overcome this limitation, we introduce an approach, GVFExplorer, that strategically directs
the behavior policy to sample actions in proportion to the total variance across GVF predictions.
This strategy is based on the understanding that prioritizing high-variance regions leads to more
informative samples which ultimately enhance the accuracy of GVF evaluations. We use an existing
temporal difference (TD) based variance estimator (Jain et al., 2021) to allow bootstrapping and
iterative updates.

Contributions: (1) We design an adaptive behavior policy that enables learning multiple GVF
predictions accurately and efficiently in parallel [Algorithm 1]. (2) We derive an iterative behavior
update rule that directly minimizes the overall prediction error [Theorem 5.1]. (3) We prove that
in the tabular setting, each update to the behavior policy reduces the total MSE across GVFs
[Theorem 5.2]. (4) We establish the existence of a variance operator that enables us to use TD-
based variance estimation [Lemma 6.1]. (5) We empirically demonstrate that GVFExplorer lowers the
total MSE when estimating multiple GVFs compared to baseline approaches and enables evaluating
a larger number of GVFs in parallel.

2 Related Work

In RL, the exploration literature has mainly focused on exploration for improving policy performance
for a single objective (Oudeyer et al., 2007; Schmidhuber, 2010; Jaderberg et al., 2016; Machado et al.,
2017; Eysenbach et al., 2018; Burda et al., 2018; Guo et al., 2022). Refer to Ladosz et al. (2022) for
a detailed survey on exploration techniques in RL. While related to exploration, our work instead
focuses on learning a behavior policy for evaluating multiple GVFs.

Our work is most closely related to other works on learning multiple GVFs. While Xu et al. (2022)
studies a similar problem of evaluating multiple GVFs using an offline dataset, our method operates
online without any pre-collected samples. Thus, our work avoids the data coverage limitations of
offline approaches. Linke et al. (2020) develops exploration for learning GVFs in a stateless bandit
context, which does not deal with the off-policy learning or function approximation challenges present
in the full Markov Decision Process (MDP) context. Prior works like Hanna et al. (2017) learned a
behavior policy for a single policy evaluation problem using a REINFORCE-style (Williams, 1992)
variance-based method called BPS. This idea is similar to variance reduction techniques in Monte
Carlo Simulation, which use Importance Sampling and derive a minimum-variance sampling strat-
egy (Owen, 2013; Frank et al., 2008). Metelli et al. (2023) also extends this idea to the control setting.
However, these methods are focused on single-task evaluation or control. Predicting multiple values
is more challenging due to the need to carefully balance action selection among various interrelated
learning problems. Perhaps the closest to our work is the algorithm of McLeod et al. (2021), which
uses weight changes in the Successor Representation (SR) (Dayan, 1993) as an intrinsic reward to
learn a behavior policy that supports multiple predictive tasks. GVFExplorer is simpler, optimizing
the behavior policy to directly minimize total prediction error over GVFs, resulting in an intuitive
variance-proportional sampling strategy. We will compare the two approaches empirically as well.

3 Preliminaries

Consider an agent interacting with the environment to obtain estimate N different General Value
Function (GVF) (Sutton et al., 2011). We assume an episodic, discounted Markov decision process
(MDP) where S is the set of states, A is the action set, P : S ×A → ∆S is the transition probability
function, ∆S is the S-dimensional probability simplex, and γ ∈ [0, 1) is the discount factor.
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Each GVF is conditioned on a fixed policy πi : S → ∆A, i = {1, . . . , N } and has a cumulant
ci : S × A → R. For simplicity, we assume that all cumulants are scalar, and that the GVFs share
the environment discount factor γ. This eases the exposition, but our results can be extended to
general multidimensional cumulants and state dependent discount factor γ.

Each GVF is a value function Vπi(s) = Eπi,P [Gi
t|st = s] where Gi

t = ci,t + γGi
t+1. Each GVF can

be viewed as answering the question, “what is the expected discounted sum of ci received while
following πi?” We can also define action-value GVFs: Qπi

(s, a) = ci(s, a) + γEs′∼P(·|s,a)[Vπi
(s′)].

Similar to traditional value functions, we have: Vπi
(s) = Ea∼πi(·|s)[Qπi

(s, a)].

At every time step t, the agent is in state st, takes an action at and receives cumulant values ci,t for
all i ∈ {1, . . . , N }, transitioning to a new state st+1. This repeats until reaching a terminal state or
a maximum step count. Then the agent resets to a new initial state and starts again. The agent
interacts with environment using some behavior policy, µ : S → ∆A. The goal of the agent is to
compute the approximate values V̂i corresponding to the true GVFs value Vπi . We formalize this
objective as minimizing the Mean Squared Error (MSE) under some state weighting d(s) for
all GVFs:

MSE(V, V̂ ) =
N∑

i=1

∑
s∈S

d(s)
(

Vπi(s) − V̂i(s)
)2

. (1)

In our experiments, we use the uniform distribution for d(s). In principle, this objective could be
generalized to prioritize certain GVFs by using a weighted MSE.

Importance Sampling. To estimate multiple GVFs with distinct target policies πi in parallel,
off-policy learning is essential. Importance sampling (IS) is one of the primary tools for off-policy
value learning (Hesterberg, 1988; Precup, 2000; Rubinstein & Kroese, 2016). IS allows to estimate
the expected return G under a target policy π, using trajectories from a different behavior policy
µ. The probability of trajectory τ = (s0, a0, r0 . . . sT , rT ) occurring under π is denoted by wπ(τ),
and under µ by wµ(τ). The true value for any s state Vπ(s) = Eτ∼π[Gt|st, a ∼ π] can be estimated

by sampling actions under µ as V̂ µ
π (s) = 1

K

∑K
j=1

wπ(τj)
wµ(τj){Gt|st = s, τj ∼ µ}. This IS estimate is

unbiased, i.e. Eτ∼µ[V̂ µ
π (s)] = Vπ(s). There are also variations of IS that provides lower variance,

such as per-decision IS, weighted IS and discounted stationary distribution IS (Precup, 2000).

4 Problem Formulation

As described in the previous section, the goal of the agent is to minimize the total mean squared
error (MSE) across the given GVFs (Equation (1)). Note that MSE = Variance + Bias2. As we
will be using unbiased IS estimation for off-policy correction, the task of reducing the total MSE
essentially becomes minimizing the total variance across GVFs. Thus, the crux of our problem is to
find a behavior policy that gathers data in such a way as to minimize the variance across the set of
GVFs.

Prior works (Kahn & Marshall, 1953; Owen, 2013) have studied a simpler version of the above
problem, seeking an optimal behavior policy µ∗ for estimating a single target policy value using IS
through variance reduction:

min
µ

Vara∼µ

(
wπ(τ)
wµ(τ)G(τ)

)
=⇒ wµ∗(τ) = wπ(τ)

Eτ∼π[G(τ)]G(τ).

However, this analytical solution of µ∗ is infeasible for estimating multiple GVFs due to its depen-
dence on the unknown quantity Eτ∼π[G(τ)] = Vπ. To address this limitation and estimate multiple
GVFs as well, our approach involves optimizing µ∗ to minimize the total variance in cumulants
across all GVFs, under state weighting d(s):

µ∗ = arg min
µ

N∑
i=1

∑
s∈S

d(s)Varπi
(Gt|st = s, a ∼ µ). (2)
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4.1 Objective Function

To solve this optimization problem, we will rely on the variance function Mµ
π (s), which measures

the variance in the return of target policy π in a state s when actions are sampled under a
different behavior policy µ. In-depth insights into the variance operator is explored in Section 6.
The variance function for a given state is defined as:

Mµ
π (s) = Varπ(Gt|st = s, a ∼ µ)

Similarly, for each state-action pair, we can define:

Mµ
π (s, a) = Varπ(Gt|st = s, at = a, a′ ∼ µ)

In this work, the objective is to find an optimal behavior policy µ∗ that efficiently collects
data to minimize the sum of variances Mπ{1...N } under some desired state distribution d(s).
Thus, the objective is:

µ∗ = arg min
µ

N∑
i=1

∑
s

d(s)Mµ
πi

(s) s.t. µ(a|s) ≥ 0 &
∑

a

µ(a|s) = 1. (3)

Next, we present an iterative update for the behavior policy obtained by solving the objective in
Equation (3).

5 Theoretical Framework

Theorem 5.1. (Behavior Policy Update:) Given N target policies πi for i ∈ {1 . . . N }, let

k ∈ {1, . . . , K} denote the number of updates to the behavior policy µ and let ρi(s, a) = πi(a|s)
µ(a|s)

be the per-step IS weight. Using the variance state-action function Mµk
πi

(s, a), the behavior policy
updates as follows:

µk+1(a|s) =
√∑

i πi(a|s)2Mµk
πi (s, a)∑

a′

√∑
i πi(a′|s)2Mµk

πi (s, a′)
. (4)

Proof. The proof is presented in Appendix A.

Theorem 5.1 outlined above provides an iterative solution using the variance under the previous
behavior policy µk to guide the next policy µk+1. These updates drive the behavior policy to
explore areas with higher variability, leading to a decrease in the overall variance and, hence, MSE.
Furthermore, this approach of reducing overall variance also allows accurate learning of multiple
GVF values with fewer data samples, thereby reducing the number of environmental interactions
needed to obtain good approximations. In the next theorem, we will establish that each update
from µk to µk+1 decrease the overall variance across GVFs, providing monotonic progress towards
the overall objective in an oscillation-free manner.
Theorem 5.2. (Behavior Policy Improvement:) The behavior policy update in Eq.(4) ensures
that the aggregated variances across all target policies πi∈{1...N } decrease with each update step
k ∈ {1 . . . K}, that is,

N∑
i=1

Mµk+1
πi

≤
N∑

i=1
Mµk

πi
, ∀k.

Proof. The proof is in Appendix A.

6 Variance Function

The theorems given in the previous section suggest an approach to learn an optimal behavior policy
is dependent on the variance function Mµk

πi
. We will study this variance function in detail now.
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What is the Variance Function M? In an off-policy context, Jain et al. (2021) introduced the
variance function M , which estimates the variance in return under a target policy π using data from
a different behavior policy µ. We will directly use this function M as our variance estimator and
present it here for completeness. The function M for a state-action pair under π, with an importance
sampling correction factor ρt = π(at|st)

µ(at|st) , is defined as:

Mµ
π (s, a) = Vara∼µ (Gt,π|st = s, at = a) = Ea∼µ

[
(Gt,π − Ea∼µ[Gt,π|st = s, at = a])2 |st = s, at = a

]
= Ea∼µ

[
δ2

t + γ2ρ2
t+1Mµ

π (st+1, at+1)|st = s, at = a
]

(5)
Here, Gt,π is the return at time t, and δt = rt + γVπ(st+1) − Vπ(st) (Sutton & Barto, 2018) is the
TD error. The variance function Mµ

π (s, a) relates the variance under π from the current state-action
pair to the next, when trajectories are sampled from µ. This allows us to effectively bootstrap and
iteratively update using temporal difference (TD) style method. Similarly, variance given state:

Mµ
π (s) = Vara∼µ (Gt,π|st = s) = Ea∼µ

[
ρ2

t

(
δ2

t + γ2ρ2
t+1Mµ

π (st+1, at+1)
)

|st = s
]

(6)

Both state and state-action variances are interconnected, with Mµ
π (s) =

∑
a µ(a|s)ρ2(s, a)Mµ

π (s, a).
Note that the value function Vπ is required to compute the TD error δ. Following Jain et al. (2021),
we substitute the value estimate V̂ for the true function Vπ to compute δt in Eq.(5) and Eq.(6).

Next, we prove the existence of M , which was not actually covered in Jain et al. (2021). This
existence proof inherently establishes an upper bound on the IS ratio ρ. This condition limits the
divergence of the behavior policy from the target policy, aligning with methodologies like TRPO
(Schulman et al., 2015) and Retrace (Munos et al., 2016), which control the stability of policy
updates by regulating the divergence.

When does the Variance Function Exists? Let cµ ∈ R|S×A| denote the pseudo-reward
cµ(s, a) =

∑
s′ P (s′|s, a)δ2(s, a, s′) and P̄µ ∈ R|S×A×S×A| represent the transition probability ma-

trix P̄µ(s, a, s′, a′) = P (s′|s, a)µ(a′|s′)ρ2(s′, a′). The matrix form of Mµ
π is:

Mµ
π = cµ + γ2P̄µMµ

π =⇒ Mµ
π = (I − γ2P̄µ)−1cµ. (7)

The existence of Mµ
π hinges on the invertibility of matrix (I − γ2P̄µ). Lemma 6.1 establishes the

existence of the above inverse using Definition A.1 and Lemmas A.2 and A.3.
Lemma 6.1. (Variance Function M Existence:) Given a discount factor 0 < γ ≤ 1, the
existence of variance function M depends on the invertibility of matrix (I − γ2P̄µ) if the below
condition is satisfied:

Ea∼µ

[
ρ2(s, a)

]
<

1
γ2 , ∀s ∈ S.

Proof. Proof in Appendix A.

Lemma 6.1 results in a loose upper bound on the IS weight ρ. This constraint emerges naturally as
a necessary condition for the existence of the variance operator in Equation (7).

7 Algorithm

We are now ready to discuss the GVFExplorer algorithm, detailed in Algorithm 1. Our approach
uses two networks: one for the value function (Q) and another for the variance function (M), each
with N heads (one head for each GVF). The agent begins with a randomly initialized behavior
policy. At each step, the agent observes cumulants for each of the N GVFs, then it updates the
Q-network using off-policy TD. In our experiments, we use Expected Sarsa (Sutton & Barto, 2018),
which has lower variance than other off-policy learning methods. This happens because Expected
Sarsa updates the target with the expected value over the target policy’s actions for the next state
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value. The TD-error δ generated by the Q-network is then used to update the variance network M
(see Equation (5)). We use Expected Sarsa for the M -network update as well. The behavior policy
is then updated based on the new variance estimates, using Equation (4). This iterative process
continues through K environment steps, ultimately producing a refined Q-network for GVF value
predictions.

To further enhance the algorithm’s adaptability and efficiency, we incorporate established Deep RL
techniques such as Experience Replay Buffer for data reuse and target networks for both Q and M
to improve learning stability.

Algorithm 1: GVFExplorer: Efficient Behavior Policy Iteration for Multiple GVFs Evaluations
Input: Target policies πi∈{1,2,...n}, randomly initialize behavior policy µ1, replay buffer D,

randomly initialized primary networks Qθ, Mw, and target networks Qθ̄, Mw̄, learning
rate for value αQ and variance αM , mini-batch size b, trajectory length T , target
network update frequency l = 100, value and variance network update frequency
p = 4, m = 8 respectively, training steps K

1 for environment step = 1, . . . K do
2 Observe state st, action at ∼ µk(·|st), next state st+1, cumulants ct = Vector(size(n))
3 Store transition (st, at, st+1, ct) in replay D.
4 if step%p == 0 then
5 //Update the Qθ network
6 Sample mini-batch of size b of transition (st, at, st+1, ct) ∼ D.
7 Compute Qtar as Tensor(size(b, n, |A|)).
8 Update Qθ using gradient descent on MSE loss (Qtar(st, at) − Qθ(st, at))2.
9 if step%l == 0 then

10 θ̄ = θ //Update the target Q network weights θ̄
11 end
12 end
13 if step%m == 0 then
14 //Update the Variance Mw network
15 Sample mini-batch of size b of transition (st, at, st+1, ct) ∼ D
16 Compute target Mtar as Tensor(size(b, n, |A|)), where,

δt = ct + γEa′∼π(st+1) [Qθ̄(st+1, a′)] − Qθ(st, at)
Mtar(st, at) = δ2

t + γ2Ea′∼π(st+1) [Mw̄(st+1, a′)]

Update Mw using gradient descent on MSE loss (Mtar(st, at) − Mw(st, at))2

17 if step%l == 0 then
18 w̄ = w //Update target M network weights w̄
19 end
20 end
21 //Update the behavior policy µ using the new Variance Mw

22 Behavior policy becomes: µk+1(a|s) =
√∑n

i=1 πi(a|s)2M i
w(s, a)∑

a′∈A
√∑n

i=1 πi(a′|s)2M i
w(s, a′)

, ∀s ∈ S, a ∈ A.

23 end
24 Returns GVFs Values {Qθ}i∈{1,2...n}.

8 Experiments

We investigate the empirical utility of our proposed algorithm in both discrete and continuous state
environments. Our experiments are designed to answer the following questions: (a) can GVFExplorer
evaluate multiple GVFs efficiently? (b) how does GVFExplorer compare with the different baselines
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(explained below) in terms of convergence speed and estimation quality? (c) can GVFExplorer handle
a large number of GVFs? (d) can GVFExplorer work with non-linear function approximations? The
code is available at Github https://github.com/arushijain94/ExplorationofGVFs.

Baselines. We benchmark GVFExplorer against several different baselines: (1) RoundRobin: uses
a round-robin strategy to episodically sample from all target policies and uses off-policy Expected
Sarsa for parallel estimation of multiple GVFs; (2) MixturePolicy: similar to RoundRobin, but uses
a combined policy from all the given target policies; (3) SR: a Successor Representation (SR) based
method which uses a intrinsic reward of total change in SR and reward weights to learn a behavior
policy, as in(McLeod et al., 2021). (4) BPS: behavior policy search method originally designed for
single target policy evaluation using a REINFORCE-style variance estimator (Hanna et al., 2017);
we adapted it by averaging the variance across multiple GVFs (as in our objective). BPS results
are limited to tabular settings due to scalability and performance issues. (5) UniformPolicy: a
uniform sampling policy over the action space. We include all the relevant hyperparameters and
implementation details in Appendix B.1.

Experimental Settings. To answer the questions presented above, we consider different settings:
(Setting 1): In a tabular setting, we examine two GVFs with distinct target policies but identical
cumulants, (π1, c), (π2, c). (Setting 2): In the same environment, we assess two GVFs with different
target policy-cumulant pairs, (π1, c1), (π2, c2). (Setting 3): To verify the scalability of proposed
method with high number of GVFs, we evaluate combinations of 4 different target policies π1 . . . π4
with 10 different cumulants c1 . . . c10, resulting in 40 GVFs. (Setting 4): In a continuous state
environment with non-linear function approximator, we evaluate two distinct GVFs, (π1, c1), (π2, c2).
Across these varied settings, we measure the MSE as a function of the the number of actions taken
by the agent.

8.1 Tabular Experiments

We consider a 20 × 20 grid with discrete states and four actions which moves the agent in four
cardinal directions. The discount factor is γ = 0.99. The environment is stochastic, where with
0.1 probability, agent uniformly moves in any direction. In (Setting 1), the cumulant is placed
at the top left corner with a reward of N (µ = 100, σ = 5) and zero everywhere else. The agent
starts from any non-goal state. The episode terminates either after 500 steps or upon reaching the
goal. Detailed description of the two target policies is provided in Appendix B.1. The true value
function is calculated analytically as Vπ = (I − γPπ)−1cπ for MSE computation. Figure 1 compares
the averaged MSEs and the individual MSE for the estimated v̂c

π1
, v̂c

π2
for all algorithms. The results

indicate that GVFExplorer reduces the MSE faster, indicating more precise value estimation given
the same number of agent-environment interactions.

Next, in (Setting 2), we evaluate two GVFs, each with a different target policy-cumulant pairs. For
GVF1, the cumulant c1 = N (µ = 100, σ = 5) is assigned to the top-left corner with zero elsewhere,
while GVF2 receives c2 = N (µ = 50, σ = 5) at the top-right corner only. Figure 2 presents the
comparison of MSEs for different algorithms; GVFExplorer produces better value estimates compared
to the baselines. We also qualitatively analyse the results, by comparing baseline RoundRobin and
GVFExplorer. In Figure 2(b,e) the plots depict the averaged absolute difference between true and
estimated GVF values across states, Ei[|V ci

πi
− V̂ ci

πi
|]. GVFExplorer leads to smaller errors (duller

colors), especially around the high variance goal regions. In Figure 2(c,f) we show GVFExplorer’s
estimated variance for GVF1 and GVF2, demonstrating high variance regions. This plot highlights
the need for strategic non-uniform sampling, by focusing on high variance regions to minimize
environmental interactions. These variance plots show log-scale empirical values; most areas appear
black, due to their relatively small magnitude compared to high variance regions.

In the Setting 3, we evaluate our method’s ability to handle a large number of GVFs. We examine
four target policies (πn∈1...4), each aligned with a cardinal direction, and ten cumulants (cm∈1...10),
aiming to predict 40 GVF combinations (vc1

π1...4
. . . vc10

π1...4
). Each GVF is associated with a state space
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(a) Averaged MSE (b) MSE1, MSE2

Figure 1: Setting 1 in 20x20 Grid: MSE in value prediction for 2 target policies with the
same cumulant (π1, c), (π2, c) averaged over 25 runs. We show results for baselines – RoundRobin,
MixturePolicy, UniformPolicy, SR, BPS and GVFExplorer. (a) Averaged MSE as Ei[(V c

πi
(s) −

V̂ c
πi

(s))2]. (b) MSE1 : Es[(V c
π1

(s) − V̂ c
π1

(s))2], and MSE2 : Es[(V c
π2

(s) − V̂ c
π2

(s))2]. GVFExplorer
shows lower MSE compared to other baselines.

(a) Average MSE (b) Value Error(RoundRobin) (c) Var GVF1(GVFExplorer)

(d) MSE1, MSE2 (e) Value Error(GVFExplorer) (f) Var GVF2(GVFExplorer)

Figure 2: Setting 2 in 20x20 Grid: Evaluate two distinct GVF targets (π1, c1) and (π2, c2)
averaged over 25 runs. We compare baselines – RoundRobin, MixturePolicy, UniformPolicy,
SR, BPS with GVFExplorer. Green dots show GVF goals. (a) Averaged MSE, (d) MSE1, MSE1.
(b,e) Depicts averaged absolute error in GVFs value predictions for baseline RoundRobin and
GVFExplorer. GVFExplorer demonstrate notably lower errors. (c,f) Shows estimated variance
M̂ c1

π1
, M̂ c2

π2
in GVFExplorer, highlighting benefits of variance-based sampling. The color bar uses

log scale, where vibrant colors indicate higher values.

region (“goal”), uniformly sampled and assigned cumulant value ranging from 50 to 100. The agent
receives a zero cumulant signal on non-goal states. In Figure 3, we present a comparison of the
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Figure 3: Setting 3 in 20x20 Grid: 40 different GVFs comprising of all combinations of 4 target
policies and 10 different cumulants. We show the averaged MSE over these GVFs for different
baselines and GVFExplorer, where performance is averaged over 25 runs. GVFExplorer method
scales well to a large number of GVFs.

average MSE across the various GVFs, illustrating the scalability of the proposed algorithm when
increasing the number of GVFs. Notably, baseline SR shows limited scalability, because the varying
cumulant scales affect the intrinsic behavior rewards (summation of SR weight change and reward
weights). We omit BPS from this analysis due to its suboptimal performance in earlier experiments.

8.2 Continuous State Environment with Non-Linear Function Approximation

We use a Continuous GridWorld environment that extends the tabular experiments to a continuous
state space (McLeod et al., 2021), and maintain four discrete cardinal actions. This environment is
purposefully selected for its suitability in demonstrating meaningful and distinct GVF goals, offering
a clearer qualitative analysis compared to more complex environments. We examine Setting 4 and
consider two GVFs. The first GVF has a cumulant at the top-left corner c1 = N (µ = 100, σ = 10)
and the second GVF has at the top-right corner c2 = N (µ = 50, σ = 5), with zero cumulant assigned
everywhere else. We used a constant discount γ = 0.99. We used an Experience Replay Buffer
with capacity 25K and batch size 64 for all the experiments. Further specifics on the computation
of the true value functions using Monte Carlo and details on network architectures are provided in
Appendix B.2.

Prioritized Experience Replay (PER). In our study, we also integrated Prioritized Experience
Replay (PER) (Schaul et al., 2015) to evaluate the effectiveness of our algorithm. Unlike the standard
Experience Replay Buffer which uniformly samples experiences, PER usually assigns priorities to
samples based on the magnitude of the TD error in the Q-network. PER influences the weighting
of samples during gradient updates without modifying the data collection process. In contrast,
GVFExplorer adjusts the sampling strategy based on the total variance, defined as the expected
cumulative discounted squared TD errors over time (refer Equation (6)). GVFExplorer proactively
uses future errors to adapt the sampling strategy. Whereas, PER focuses on one-step errors and
only alters gradient updates without affecting the sampling strategy. Our method differs from PER
in its independence from the replay buffer size ( or example, online learning in tabular experiments),
offering flexibility with limited memory, while PER is known for diminishing performance with
smaller buffer sizes.

However, with further analysis, we found that PER is compatible with GVFExplorer, and in fact en-
hances its effectiveness. We use the absolute sum of TD errors across multiple GVF Q functions as a
priority metric for PER in all the baselines, including GVFExplorer. We also conducted experimen-
tal trials using TD error of variance function to set the priority in GVFExplorer, but the results are
not as good as the one obtained with priority on Q function’s TD error. In Figure 4, we present the
MSE for both standard experience replay (solid lines) and PER (dotted lines) for all the algorithms.
Interestingly PER reduces the MSE for most of the methods, but its integration with GVFExplorer
offers a notable improvement. For the SR baseline, where the TD error in SR predictions is used as
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(a) Avg. MSE (b) MSE Left Goal (c) MSE Right Goal

Figure 4: Averaged MSE in Continuous Env.: Compare the MSE metrics in baselines -
RoundRobin, MixturePolicy, SR and GVFExplorer (averaged over 50 runs with standard errors)
for both standard Experience Replay Buffer (solid lines) and with Priority Experience Re-
play (PER) (dotted lines). GVFExplorer demonstrates lower MSE with both types of replay buffers.
PER generally reduces MSE across all algorithms, except for SR.

Table 1: Avg. MSE Summary for Cont. Env.: Averaged MSE across two GVFs for different
algorithms in the continuous environment. GVFExplorer performance measured against others using
standard and prioritized experience replay after 1 × 106 learning steps. Note: Smaller MSE
indicates better performance.

Avg MSE
@1e6 steps SR MixturePolicy RoundRobin

GVFExplorer
(Ours)

% Improvement of GVFExplorer
(against best baseline)

Standard
Replay Buffer 21.7 18.25 16.78 5.19 69%

Prioritized
Exp. Replay 112 14.7 11.62 3.87 66%

priority due to lack of a separate Q-network, we noted a substantial performance degradation. This
suggests that the non-stationarity in the SRs’ TD errors under a dynamic behavior policy might
lead PER to prioritize states that became less relevant under the current policy. The original SR
work by McLeod et al. (2021) does not use PER in the experiments.

In Figure 5, we compare the absolute value errors for the baseline RoundRobin and GVFExplorer
by discretizing the state space. Due to the objective of minimizing total MSE, we see smaller
error magnitudes near the goals in GVFExplorer, indicating a focus on high-variance areas. Further
insights into the variance estimation by GVFExplorer is shown in Appendix B.2. In Figure 6,
GVFExplorer algorithm initially exhibits goal-directed behavior due to higher variability, resulting
into faster cumulant propagation along other states. As the variance near the goals diminishes, the
agent shifts its focus to other regions in descending order of variance, presenting a strategic data
sampling approach. Finally, Table 1 summarizes the results highlighting the performance of various
algorithms at 106 steps.

9 Discussion

In this work, we addressed the problem of parallel evaluations of multiple GVFs, each conditioned
on a given target policy and cumulant. We developed a method to adaptively learn a behavior policy
that uses a single experience stream to estimate all GVF values in parallel. The behavior policy
selects actions in proportion to the total variance of the return across the multiple GVFs. This
guides the policy to explore less known areas, thereby accelerating information flow and minimizing
environmental interactions. We theoretically proved that each behavior policy update step reduces
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(a) Avg V̂ ci
πi error(RoundRobin) (b) V̂ c1

π1 error(RoundRobin) (c) V̂ c2
π2 error(RoundRobin)

(d) Avg V̂ ci
πi error(GVFExplorer) (e) V̂ c1

π1 error(GVFExplorer) (f) V̂ c2
π2 error(GVFExplorer)

Figure 5: Value Prediction Errors in Continuous Env: Compares log-scale absolute errors
between actual and predicted values for two GVFs. Top row: RoundRobin baseline errors; Bottom
row: GVFExplorer results at equivalent steps. (Col 1): Mean error, (Col 2): Error in GVF 1, (Col
3): Error in GVF 2. GVFExplorer specially achieves smaller errors in areas where RoundRobin has
higher MSE, due to the focus on reducing overall MSE (indicated by lighter colors).

(a) RoundRobin τ1 (b) RoundRobin τ2 (c) GVFExplorer τ1 (d) GVFExplorer τ2

Figure 6: Sampled trajectories in Continuous Env: GVFExplorer method produces
high variance-directed trajectories, depicting a smarter data-gathering strategy, as compared to
RoundRobin which collects data according to target policies. Green dots show GVF goals and red
depicts the start state.

the total prediction error. Our empirical analysis showed the scalability of GVFExplorer for a large
number of GVFs in a tabular setting and its ability to adapt to non-linear function approximation.

Limitations and Future Work. One notable drawback of GVFExplorer is the increased time
complexity, due to simultaneously learning two networks - one for value and the other for variance
estimation. Additionally, GVFExplorer has not been evaluated in environments with significant
range variations in cumulant functions. Disparities in cumulant ranges could lead to very different
variances and potentially result in oversampling areas with higher cumulant values. Some calibration
across cumulants may be necessary in such cases.

In this work we focused on minimizing the total MSE, but other loss functions, such as weighted MSE
could also be considered. However, weighted MSE requires a priori knowledge about the weighting
of errors in different GVFs, which is not readily available. A potential future direction could be to
use variance scales to automatically adjust these weights, in order to provide uniform MSE reduction
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across all GVFs. Looking ahead, we are interested in testing our approach with multi-dimensional
cumulants and general state-dependent discount factors, as well as, extending the applicability of
GVFExplorer to control settings where the target policies are unknown.
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A Proofs

Theorem 5.1. (Behavior Policy Update:) Given N target policies πi for i ∈ {1 . . . N }, let

k ∈ {1, . . . , K} denote the number of updates to the behavior policy µ and let ρi(s, a) = πi(a|s)
µ(a|s)

be the per-step IS weight. Using the variance state-action function Mµk
πi

(s, a), the behavior policy
updates as follows:

µk+1(a|s) =
√∑

i πi(a|s)2Mµk
πi (s, a)∑

a′

√∑
i πi(a′|s)2Mµk

πi (s, a′)
. (4)

Proof. We formulate Equation (3) as a Lagrangian equation below to solve for the optimal behavior
policy µ∗.

L(µ, λs,a, ws) =
∑

i

∑
s

d(s)Mµ
πi

(s)︸ ︷︷ ︸
I part

+
∑
s,a

λs,aµ(s, a)︸ ︷︷ ︸
II part

+
∑

s

ws(1 −
∑

a

µ(s, a))︸ ︷︷ ︸
III part

. (8)

Here, λ ∈ R|S×A| and w ∈ R|S| denotes the Lagrangian multipliers. The following KKT conditions
satisfy:

1. ∇µ(s,a)L = 0

2. λs,aµ(s, a) = 0

3. λs,a ≥ 0

4. µ(s, a) ≥ 0

5.
∑

a µ(s, a) = 1

Gradient of ρ. The gradient of ρ(s, a) w.r.t. µ(a|s),

∇µ(s,a)ρ(s, a) = π(a|s)
∇µ(a|s) = − π(a|s)

µ(a|s)2 = −ρ(s, a)
µ(a|s) .

Solving I part. We will compute the gradient of Mµ
πi

(s) in Equation (5) w.r.t to given µ(s, a).
Here, ρ(s, a) = π(a|s)

µ(a|s) is IS weight. We expand Mµ
πi

(s) relation with Mµ
πi

(s, a) to derive the gradient,

Mµ
πi

(s̃) =
∑

ã

µ(ã|s̃)ρi(s̃, ã)2Mµ
πi

(s̃, ã)

∇µ(s,a)M
µ
πi

(s̃) = ∇µ(s,a)

{∑
ã

µ(ã|s̃)ρi(s̃, ã)2Mµ
πi

(s̃, ã)
}

= ρi(s, a)2Mµ
πi

(s, a) + 2µ(a|s)ρi(s, a) ∇ρi(s, a)︸ ︷︷ ︸
=−

ρi(s, a)
µ(a|s)

Mµ
πi

(s, a) + µ(a|s)ρi(s, a)2∇µMµ
πi

(s, a)︸ ︷︷ ︸
=IV part

= ρi(s, a)2Mµ
πi

(s, a) − 2ρi(s, a)2Mµ
πi

(s, a)
= −ρi(s, a)2Mµ

πi
(s, a).

The final term ∇µMµ
πi

(s, a) is difficult to estimate in the off-policy setting. Hence, we are omitting
(IV part) from the above gradient, which is similar to Jain et al. (2021), where the gradient of
M(s, a) was omitted.

Solving for the Lagrangian Equation (8) further by substituting the (I part), and taking derivation
of II & III part and using the (1) KKT condition.

∇µ(s,a)L(µ, λs,a, ws) = −
∑

i

d(s)ρi(s, a)2Mµ
πi

(s, a) + λs,a − ws = 0. (9)
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From (2)KKT condition, we know that either λs,a = 0 or µ(a|s) = 0. Following the arguments of
IS, support for µ(a|s) can only be 0 when the support for target policy π(a|s) = 0. Solving for the
case when support for target policy in non-zero, then let λs,a = 0. We can simplify the gradient of
Lagrangian in Equation (9),

ws = −
∑

i

d(s)ρi(s, a)2Mµ
πi

(s, a) = −
∑

i

d(s)πi(a|s)2

µ(a|s)2 Mµ
πi

(s, a)

µ(a|s) =

√∑
i πi(a|s)2Mµ

πi(s, a)
−ws/d(s)

(10)

We know that the numerator is always positive (variance M is positive), therefore ws < 0. Let
ys = −ws/d(s). From condition (5), we know that

∑
a µ(a|s) = 1. Using Equation (10) and

summing over all the actions we get,

∑
a

µ(a|s) =
∑

a

√∑
i πi(a|s)2Mµ

πi
(s, a)

ys
= 1

Hence, √
ys =

∑
a

√∑
i

πi(a|s)2Mµ
πi(s, a).

Therefore, the update for optimal behavior policy becomes,

µ(a|s)∗ =

√∑
i πi(a|s)2Mµ∗

πi (s, a)∑
a

√∑
i πi(a|s)2Mµ∗

πi (s, a)
.

As the optimal policy µ∗ appear on both the sides, this can be interpreted as an iterative update,
where k denotes the iterate number.

µk+1(a|s) =
√∑

i πi(a|s)2Mµk
πi (s, a)∑

a

√∑
i πi(a|s)2Mµk

πi (s, a)
.

Theorem 5.2. (Behavior Policy Improvement:) The behavior policy update in Eq.(4) ensures
that the aggregated variances across all target policies πi∈{1...N } decrease with each update step
k ∈ {1 . . . K}, that is,

N∑
i=1

Mµk+1
πi

≤
N∑

i=1
Mµk

πi
, ∀k.

Proof. Theorem 5.1 suggests, for any given µk behavior policy, the next successive approximation
µk+1 minimizes the objective function Equation (3), i.e.,

µk+1 = min
µ

∑
i

∑
s

d(s) Mµk
πi

(s)︸ ︷︷ ︸
=I

= min
µ

∑
i

∑
s

d(s)
∑

a

µ(a|s)πi(a|s)2

µ(a|s)2 Mµk
πi

(s, a)︸ ︷︷ ︸
=I

.
(11)

We will omit writing d(s) and assume that s ∼ d(s). Further, we will use the notation ρi
k(s, a) =

πi(a|s)
µk(a|s) for ease of writing. From Equation (11), we can establish the relation,

∑
i,s,a

µk(a|s) πi(a|s)2

µk(a|s)2 Mµk
πi

(s, a)︸ ︷︷ ︸
=M

µk
πi

(s)

≥
∑
i,s,a

µk+1(a|s) πi(a|s)2

µk+1(a|s)2 Mµk
πi

(s, a).
(12)
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Now, we will use Equation (12) relation to further simplify the equation and establish that variance
decreases with every update step k. We will use the notation ρt:t+n = Πn

l=0ρt+l to denote the
products.∑
i,s

Mµk
πi

(s) ≥
∑
i,s,a

µk+1(a|s)ρi
k+1(s, a)2Mµk

πi
(s, a)

=
∑
i,s,a

µk+1(a|s)ρi
k+1(s, a)2Ea∼µk

[δ2
t + γ2Mµk

πi
(st+1)|st = s]

=
∑
i,s

Ea∼µk+1

(ρi
t)2δ2

t + γ2(ρi
t)2 Mµk

πi
(st+1)︸ ︷︷ ︸

expand this

|st = s


≥
∑
i,s

Ea∼µk+1

[
(ρi

t)2δ2
t + γ2(ρi

t)2Ea∼µk+1

[
(ρi

t+1)2δ2
t+1 + γ2(ρi

t+1)2Mµk
πi

(st+2)|st+1
]

|st = s
]

=
∑
i,s

Ea∼µk+1

[
(ρi

t)2δ2
t + γ2(ρi

t)2(ρi
t+1)2δ2

t+1 + γ4(ρi
t)2(ρi

t+1)2Mµk
πi

(st+2)|st = s
]

...

≥
∑
i,s

Ea∼µk+1

[
ρ2

t:tδ
2
t + γ2(ρi

t:t+1)2δ2
t+1 + γ4(ρi

t:t+2)2δ2
t+2 + . . . |st = s

]
≥
∑
i,s

Mµk+1
πi

(s).

(13)

Definition A.1. (Spectral Radius) The spectral radius of a matrix A ∈ Rn×n is denoted by
sr(A) = max(λ1, λ2, . . . , λn), where λi denotes the ith eigenvalue of A.

Lemma A.2. The spectral radius sr(A) of a matrix A ∈ Rn×n follows the relation, sr(A) ≤ ∥A∥,
where, ∥A∥ = maxi

∑
j A(i, j) is the infinity norm over a matrix.

Proof. Following the derivation from Bacon (2018) Ph.D. thesis and work of Watkins (2004), we
use the eigenvalue of a matrix to show that sr(A) < ∥A∥. We can write λx = Ax, when λ is the
eigenvalue of A. For any sub-multiplicative matrix norm, ∥AB∥ ≤ ∥A∥∥B∥. Using this property,

∥λx∥ = |λ|∥x∥ = ∥Ax∥ ≤ ∥A∥∥x∥,

|λ| ≤ ∥A∥.

The above is true for any eigenvalue λ of A. So this must also be true for the maximum eigenvalue
of A. Therefore, we can express,

sr(A) ≤ ∥A∥.

Lemma A.3. When the spectral radius of sr(A) < 1, then (I − A)−1 exits and is equal to, (I −
A)−1 =

∑∞
t=0 At.

Proof. The proof for the Lemma is presented in Puterman (2014)[Proposition A.3].

Lemma 6.1. (Variance Function M Existence:) Given a discount factor 0 < γ ≤ 1, the
existence of variance function M depends on the invertibility of matrix (I − γ2P̄µ) if the below
condition is satisfied:

Ea∼µ

[
ρ2(s, a)

]
<

1
γ2 , ∀s ∈ S.
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Proof. Following Lemma A.3, the inverse (I − γ2P̄µ)−1 exists if spectral radius sr(γ2P̄µ) < 1.
Further, from Lemma A.2, we know that for any given matrix A, spectral radius satisfies, sr(A) ≤
∥A∥. Hence, using the above two lemmas, we can express,

sr(γ2P̄µ) ≤ ∥γ2P̄µ∥ ≤ γ2∥P̄µ∥.

Further, if spectral radius satisfies the below condition, then the inverse exists,

sr(γ2P̄µ) ≤ γ2∥P̄µ∥ < 1.

We expand the middle infinity norm term and get

max
s,a

∑
s′,a′

P̄µ(s, a, s′, a′) <
1
γ2

max
s,a

∑
s′

P (s′|s, a)
∑
a′

µ(a′|s′)ρ2(s′, a′) <
1
γ2 .

We can further express the above condition as Ea∼µ

[
ρ(s, a)2] < 1

γ2 , ∀s ∈ S.

B Experiments

We consider the two target policies with four cardinal directions left (L), right (R), up (U) and
down (D) for the tabular and non-linear function approximation environments. These policies are
specified as follows for every state s ∈ S:

π1(s) = {L : 0.175, R : 0.175, U : 0.25, D : 0.4}
π2(s) = {L : 0.25, R : 0.15, U : 0.25, D : 0.35}.

(14)

B.1 Tabular Environment

We consider a tabular 20×20 grid environment with stochastic dynamics. We use the target policies
in Appendix B.1 for the different experimental settings. The Table 2 summarizes the averaged MSE
with the same 2 × 106 samples for different experimental settings.

Table 2: Avg. MSE Summary in Tabular Env: Compares the average MSE across multi-
ple GVFs in different experimental settings in Tabular environment. We compare baselines with
GVFExplorer at same 2 × 106 steps of learning. We show the % improvement in GVFExplorer w.r.t.
to best baseline RoundRobin. Note: Smaller MSE indicates better performance.

Avg MSE @
2e6 steps BPS SR UniformPol RoundRobin MixPol

GVFExplorer
(Ours)

% Improvement of Ours
(against best baseline)

Distinct policies
same cumulant 26.13 2.76 1.22 1.15 1.15 0.24 79%

Distinct policies
distinct cumulants 8.2 4.1 0.54 0.47 0.44 0.04 91%

Large num of GVFs - 53.3 2.66 2.35 2.64 1.66 29%

Hyperparameter Tuning: In our experiments, we use linearly decaying learning rates that starts
with initial value of 1.0 and gradually decreased to an optimized minimum value within 500K steps
of environmental interactions. We used different learning rates for value and variance function in
GVFExplorer. The minimum learning rate parameter was swept within {0.1, 0.25, 0.5, 0.8, 0.9, 0.95}
for both value and variance function. The optimal minimum learning rate was determined based
on the one achieving the lowest average Mean Squared Error (MSE) after 800K sample interac-
tions. This hyperparameter tuning approach was consistently applied for all algorithms
including baselines. Figure 7 shows the sensitivity analysis of varying learning rates for value
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(a) RoundRobin (b) SR (c) BPS (d) GVFExplorer

Figure 7: Impact of Learning Rate on Averaged MSE in Setting 1: Demonstrate the effect
of changing minimum value of learning rate on the averaged MSE (performance averaged over 10
runs) across GVFs in Setting 1. The optimal hyperparameter is selected based on the least MSE
in these plots. LR_Q: value learning rate, LR_M: variance learning rate.

functions (all baselines) and variance functions (our method) with the averaged MSE performance
in experiment Setting 1 with distinct target policies and same cumulant. The learning rate resulting
in the lowest MSE was selected as optimal. In Table 3, we show the optimal hyperparameters for the
four experimental settings discussed in the paper earlier (refer Experimental Settings in Section 8).

Baselines. (1) RoundRobin: We used a round robin strategy to sample data from all given n target
policies episodically. We used Expected Sarsa to estimate all GVF value functions in parallel when
a transition is given as (st, at, st+1, ci={1,...n}),

Qi(st, at) = Qi(st, at) + α

(
ci(st, at) + γ

∑
a

πi(a′|st+1)Qi(st+1, a′) − Qi(st, at))
)

(2) MixturePolicy, UniformPolicy are also evaluated using Expected Sarsa. (3)SR: (McLeod et al.,
2021) Used a summation of weight change in SR and reward weights to get the intrinsic reward for
behavior policy. Further Expected Sarsa is used over this intrinsic reward to learn the Q value
function for behavior policy. Following the original work of McLeod et al. (2021), we use greedy
policy over this behavior’s Q function to update the behavior policy. We use same learning rates
for SR, reward weights and behavior policy Q function learning. (4)BPS: (Hanna et al., 2017) Use a

Reinforce style estimator to learn IS(τ, π) = G(τ)ΠT
t=1

π(at|st)
µ(at|st)

, as mentioned in the original paper.

Since, the original work is only about single policy evaluation, we extended for multiple GVFs by
updating behavior policy as summation over

∑
i IS(τ, πi). The behavior policy weight θ is updated

as:

θµ = θµ + α

n∑
i=1

IS(τ, πi)2
T∑

t=1
∇θ log µθ(at|st).

Experiment with Semi-greedy π in 20x20 Grid : In Setting 2, we evaluated semi-greedy
target policies with distinct cumulants, (π1, c1) and (π2, c2) within a 20x20 grid. The target policies
are designed with a bias towards top-left and top-right goals respectively,

π1(s) = {L : 0.4, R : 0.1, U : 0.4, D : 0.1}∀s ∈ S
π2(s) = {L : 0.1, R : 0.4, U : 0.4, D : 0.1}∀s ∈ S.

(15)

We keep the same cumulants as in previous experiments, c1 = N (µ = 100, σ = 5) on top-left
corner and c2 = N (µ = 50, σ = 5) on top-right corner only, with 0 cumulant everywhere else. In
Figure 8, we compare the average MSE performance, where GVFExplorer exhibits comparable MSE
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to RoundRobin baseline but requires more samples to converge. This outcome can be attributed
to the near-greedy nature of the target policies, which inherently guides RoundRobin along goal
directed trajectories, enabling it to achieve nearly accurate predictions with fewer samples. The
optimal hyperparameters for RoundRobin, UniformPolicy and MixturePolicy is αQ = 0.95. We
used αq = 0.5, αM = 0.8 for ours GVFExplorer. Another baseline SR has αQ = 0.8 and BPS as
αQ = 0.9 as optimal hyperparameters.

(a) Averaged MSE (b) MSE1, MSE2

Figure 8: 2 GVFs with distinct greedy target policy-cumulant pairs in 20x20 Grid:
Analysis of MSE in value prediction for 2 semi-greedy target policies with different cumulant
(π1, c1), (π2, c2) averaged over 25 runs. We show results for baselines – RoundRobin, MixturePolicy,
UniformPolicy, SR, BPS and GVFExplorer. (a) Averaged MSE, that is, Ei[

(
V c

πi
(s) − V̂ c

πi
(s)
)2

]. (b)
MSE1, MSE2. We observe a slower convergence of GVFExplorer as compared to baselines like
RoundRobin, MixturePolicy due to target policies being semi-greedy. Therefore, baselines lead to
goal-directed policies, hence converging faster.

Figure 9: 10 different cu-
mulants in high number
of GVF prediction exper-
iment in 20x20 grid. The
color depict the cumu-
lant empirical value.

Experiment with high number of GVF predictions, Setting 3:
In this setting, we considered 4 target policies in the four cardinal direc-
tions, namely:

πN (s) = {L : 0.1, R : 0.1, U : 0.7, D : 0.1}∀s ∈ S
πE(s) = {L : 0.1, R : 0.7, U : 0.1, D : 0.1}∀s ∈ S
πS(s) = {L : 0.1, R : 0.1, U : 0.1, D : 0.7}∀s ∈ S

πW (s) = {L : 0.7, R : 0.1, U : 0.1, D : 0.1}∀s ∈ S.

We considered 10 different cumulants, each with a single goal of con-
stant reward at states uniformly choose from S. The cumulant value
is uniformly choosen between {50, 100} and is depicted in Figure 9. In
total, the task is to predict 40 GVF values. The experimental results are
described in the main paper.

Table 3: Optimized Hyperparameters: We show the optimized hyperparameters for different
Experimental Settings. αQ is learning rate for value function. αM is learning rate for variance
function.

Exp. Settings Setting 1 Setting 2 Setting 3 Setting 4
GVFExplorer

(Ours)
(αQ = 0.25,
αM = 0.8)

(αQ = 0.1,
αM = 0.8)

(αQ = 0.5,
αM = 0.95)

(αQ = 5e − 3,
αM = 5e − 3)

RoundRobin 0.95 0.8 0.8 5e − 4
MixturePolicy 0.95 0.8 0.8 5e − 4
UniformPolicy 0.95 0.8 0.8 -

SR 0.25 0.5 0.25 1e − 3
BPS 0.5 0.8 - -
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B.2 Continuous State Environment with Non-linear Function Approximation

Continuous Environment. We consider a Continuous GridWorld, similar to the tabular environ-
ment above, but with continuous state space (McLeod et al., 2021). It is a square-shaped environment
with dimension 1 × 1 and has four discrete actions similar as before. We consider two GVFs, similar
to tabular Setting 2, where first GVF has cumulant at the left-top corner c1 = N (µ = 100, σ = 10)
and second one has cumulant in top-right corner c2 = N (µ = 50, σ = 5). The target policies are
similar to one used in tabular environment before. Agent receives zero cumulant signal everywhere
else. The agent moves with 0.025 unit in the selected direction with an additional uniform noise
[−0.01, 0.01]. The agent can start randomly from anywhere, except it can not be within 0.05 diame-
ter of the goal state. The episode ends either when total 500 steps are taken or agent reaches within
0.05 diameter of the goal. In Figure 10 we show the estimated variance from each GVF separately,
motivating the need to have a sampling strategy which prioritize high variance areas for reduced
data interactions.

Computation of the true GVF values in continuous environment. We compute the true
GVF values in a continuous environment by using a Monte Carlo (MC) method. To manage the
continuous states, we discretize the state space into a grid and select a continuous initial state from
each such grid cell. We then calculate the average discounted return over 200, 000 trajectories that
follow policy πi with cumulant ci. Finally, we assess the mean squared error (MSE) between the
estimated and true GVF values using these same discretized states (s), expressed as Ei[

∑
s(V ci

πi
(s)−

V̂ ci
πi

(s))2] for all the algorithms.

Network Architecture. We use distinct deep networks for learning value Q and variance M .
Both networks are similar. It has a shared feature extractor for input states and individual output
heads for each GVF, yielding a multidimensional outputs for both value and variance. Additionally,
variance network incorporates a softplus layer prior to each head’s output, guaranteeing a positive
numerical values.

(a) Ei={1,2}[M i(s)] (b) M1(s) (c) M2(s)

Figure 10: Estimated Variance in Continuous Env: The two GVF goals are depicted in Green.
We show the estimated variance M (log values) over states from GVFExplorer method highlighting
the motivation for behavior policy to visit high variance areas. (a) Mean variance, (b) Variance for
left goal GVF, (c) variance for right goal GVF. These variance plots show log scale empirical values;
most areas appear black due to their relatively small magnitude compared to high variance regions.
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