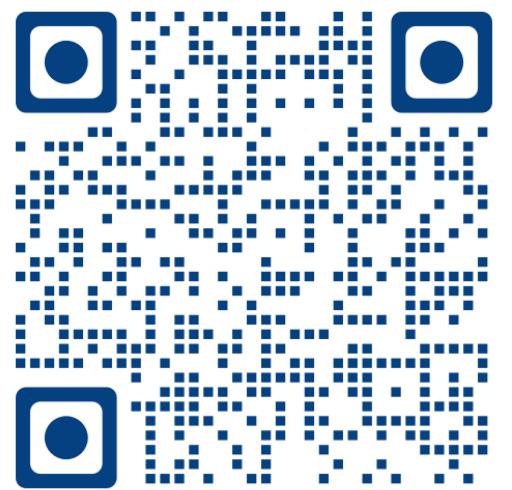


Mila



NeurIPS 2024

paper link

Towards Reliable Reinforcement Learning Systems

Job Talk

Arushi Jain

Advisor: Doina Precup
McGill University,
Google DeepMind

Hi, I am Arushi

Bachelors
IIIT-Delhi

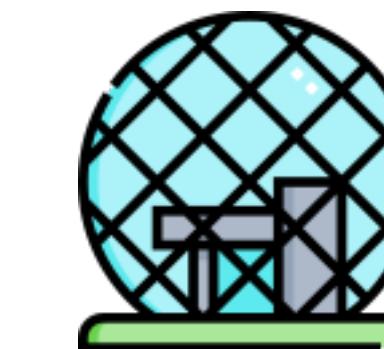
Masters & PhD
McGill University,
MILA

Internships

BENGALURU

Meta AI Lab

Microsoft Research,
Amsterdam



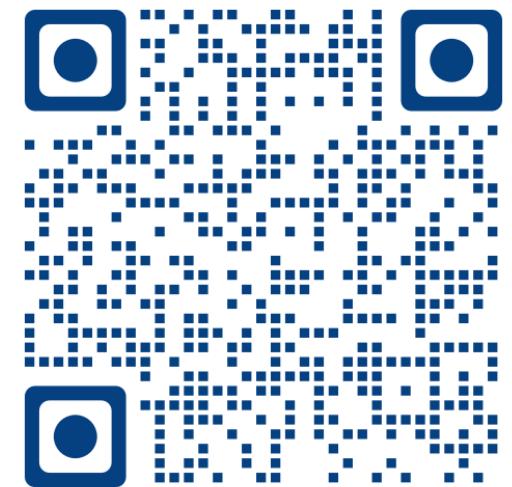
Amazon, Montreal

Motivation for my PhD

“How can we make reinforcement learning (RL) truly reliable for real-world application – ensuring agent behave safely, consistently and learn efficiently from limited data?”

GVFExplorer: Adaptive Exploration for Data-Efficient General Value Functions

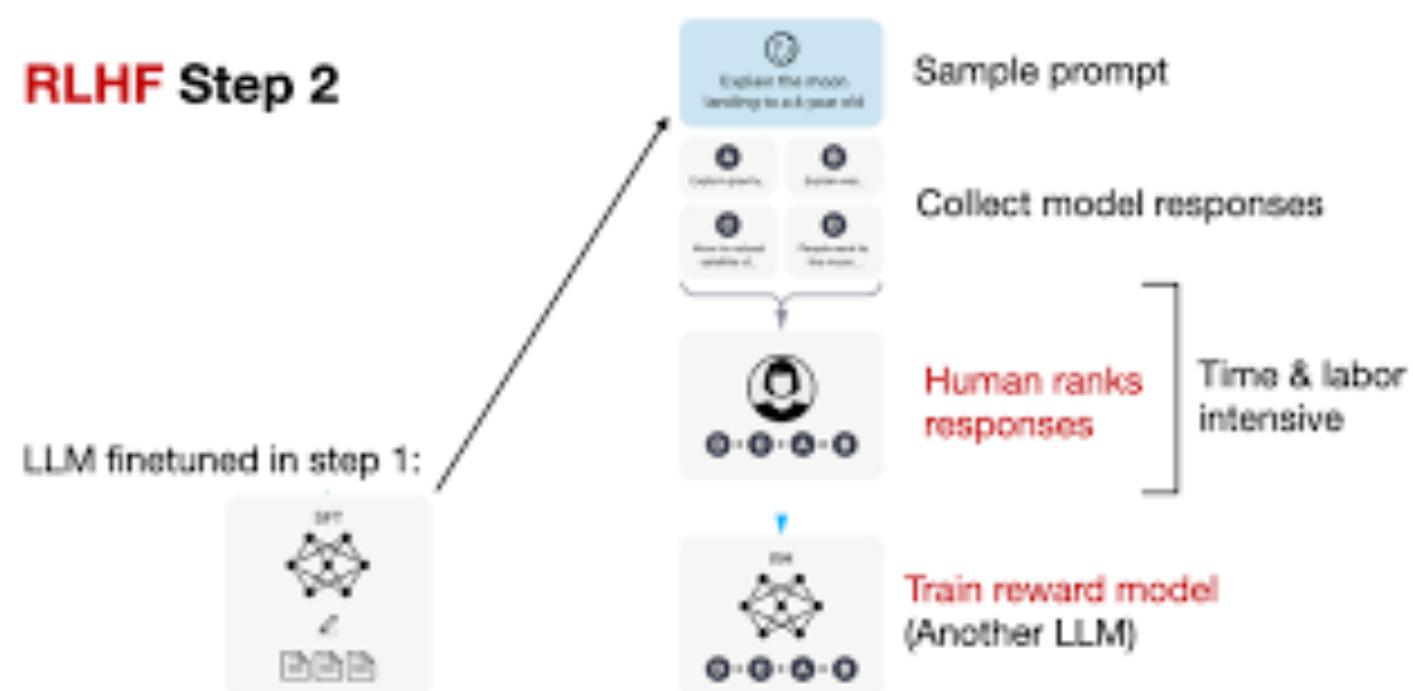
Arushi Jain, Josiah Hanah, Doina Precup



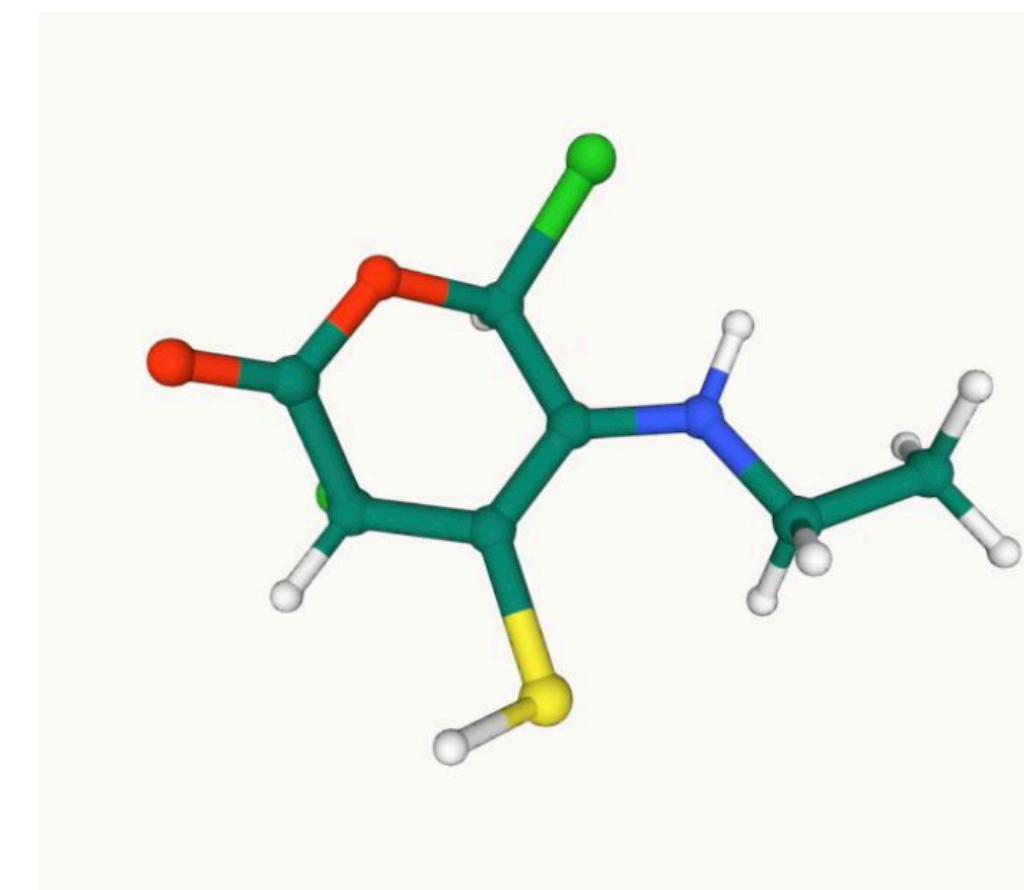
NeurIPS 2024
[paper link](#)

Example of successful RL

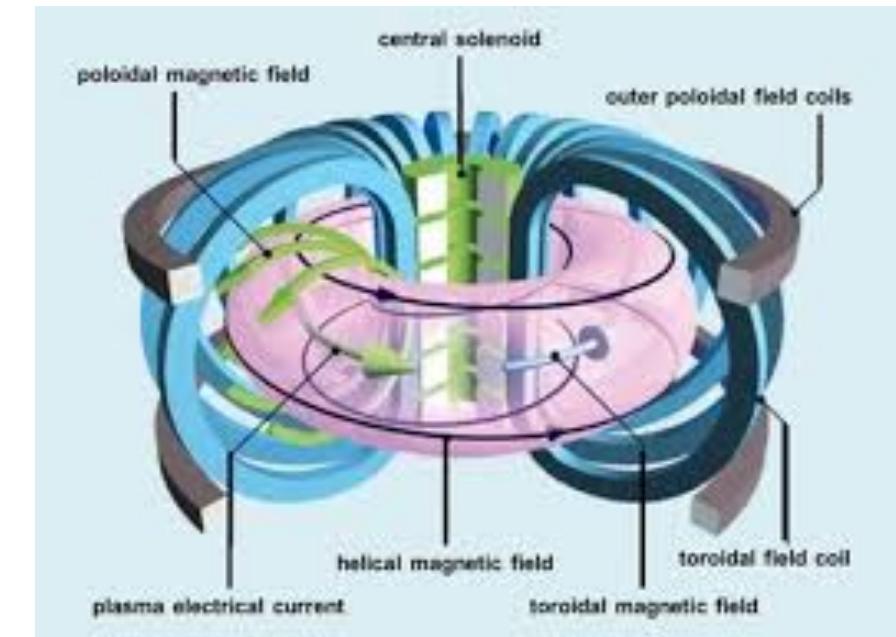
RLHF Step 2



RLHF



Molecule RetroSynthesis

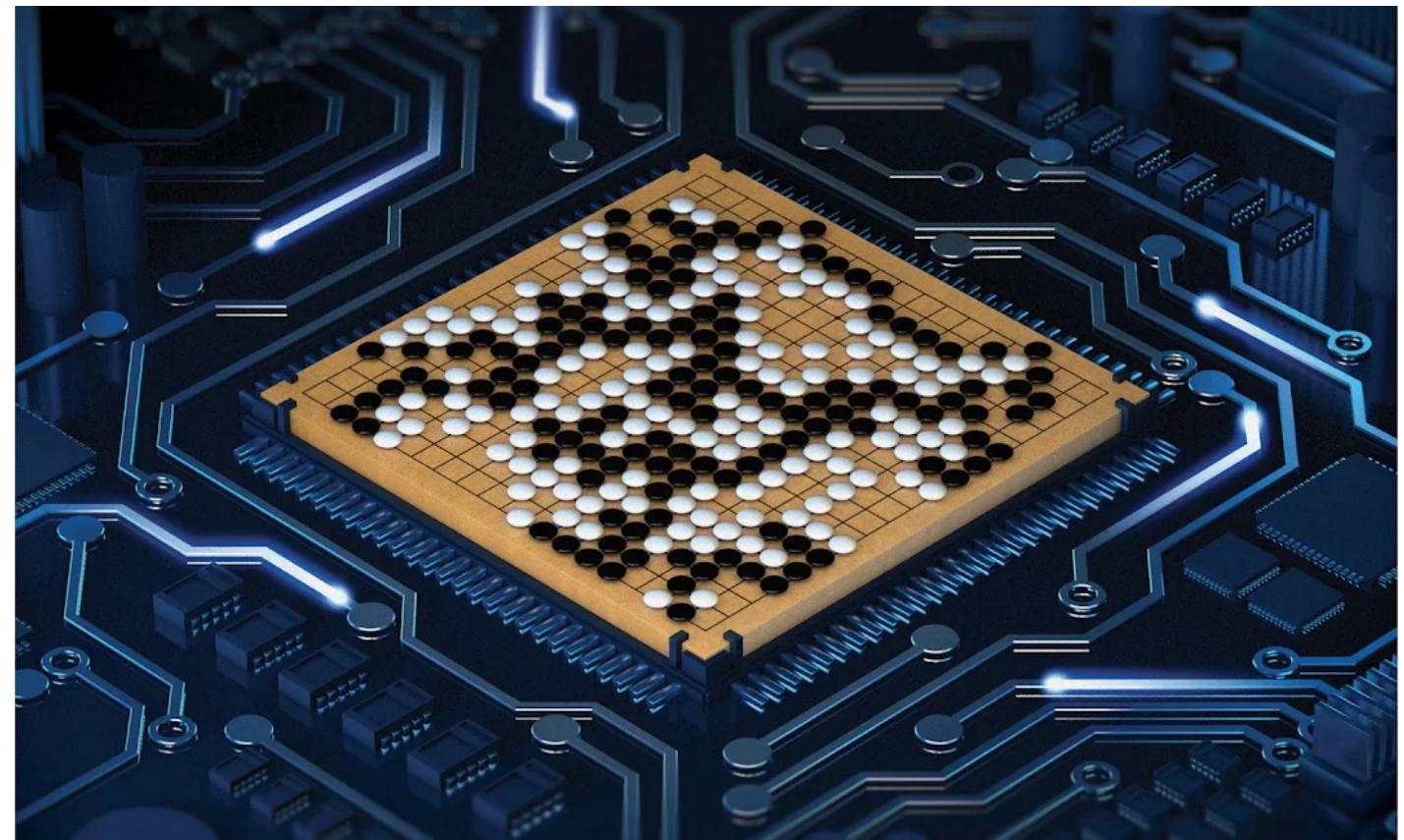


Nuclear Fusion

Robotics

Example of successful RL

RL -> Emergent Behaviours!



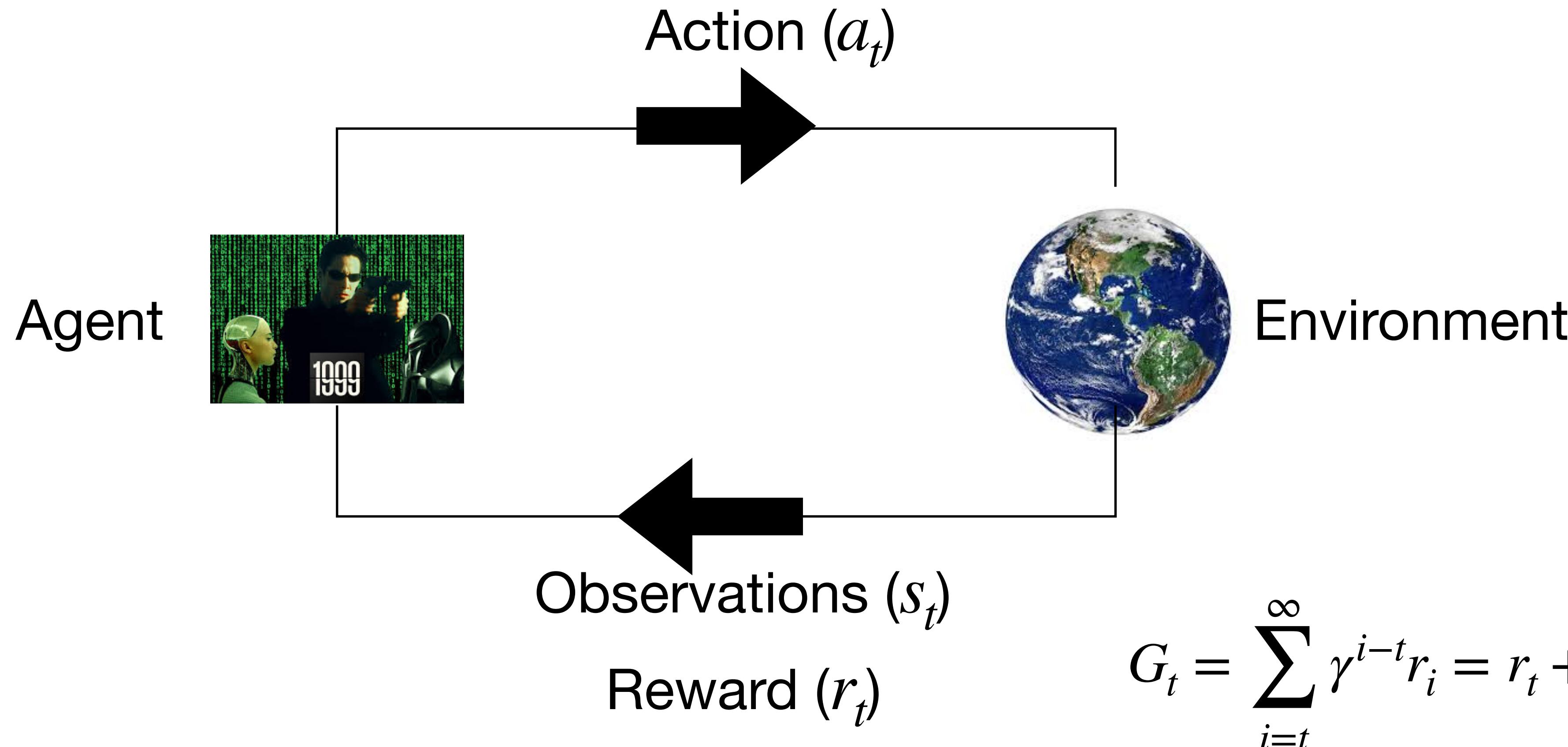
Discovered novel innovative moves
using RL that were not known to human kind

Alpha Go

High complex state space: 10^{170}

Reinforcement Learning

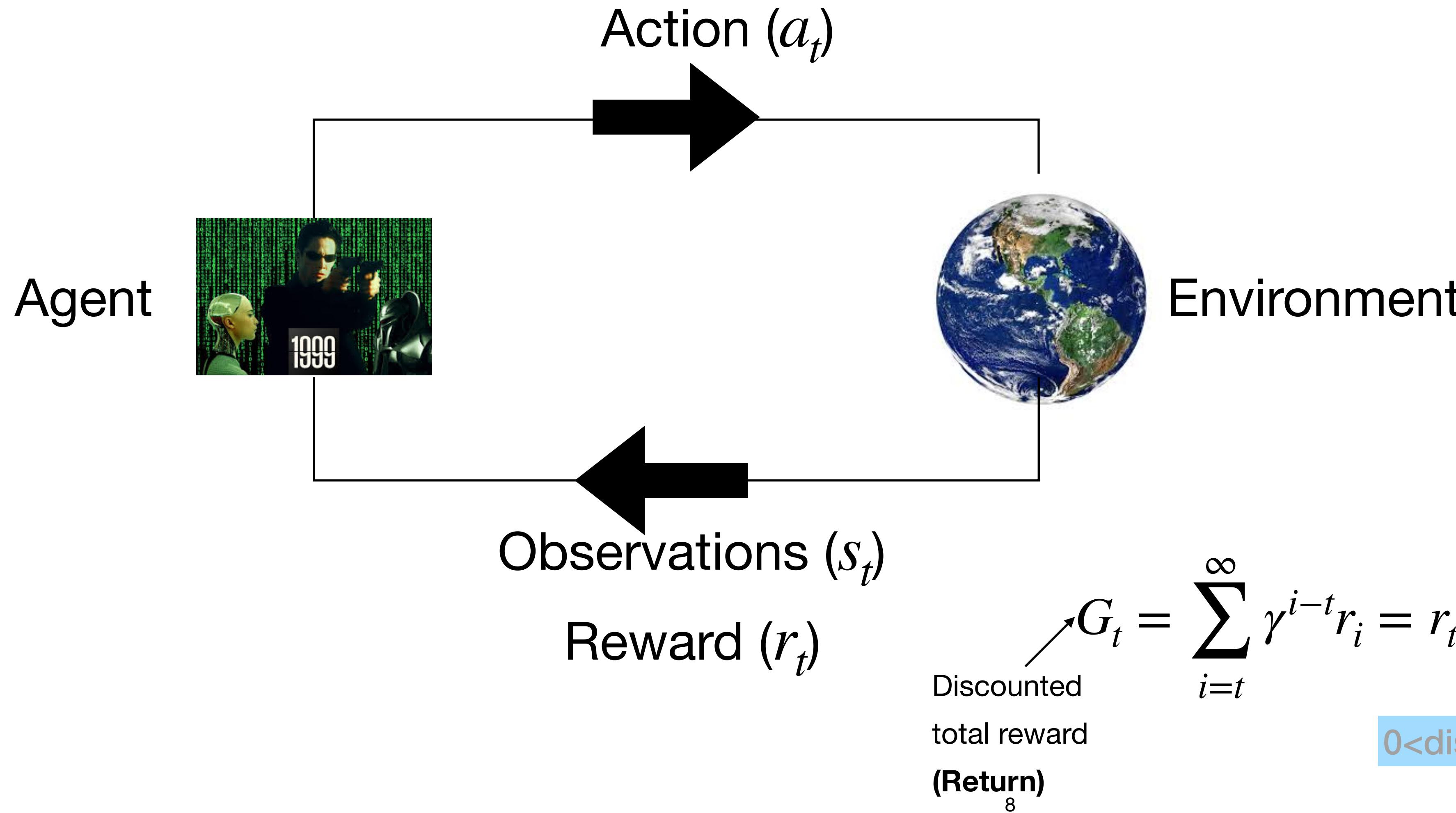
Agent interacts with the environment to maximize the reward r



$$G_t = \sum_{i=t}^{\infty} \gamma^{i-t} r_i = r_t + \gamma^1 r_{t+1} + \dots + \gamma^n r_{t+n} + \dots$$

Reinforcement Learning

Agent interacts with the environment to maximize the reward r



$$G_t = \sum_{i=t}^{\infty} \gamma^{i-t} r_i = r_t + \gamma^1 r_{t+1} + \dots + \gamma^n r_{t+n} + \dots$$

Discounted total reward (Return)

0 < discount factor < 1

Defining Q-function

$$G_t = \sum_{i=t}^{\infty} \gamma^{i-t} r_i = r_t + \gamma^1 r_{t+1} + \dots + \gamma^n r_{t+n} + \dots$$

Total reward G_t , is discounted sum of future rewards

Defining Q-function

$$G_t = \sum_{i=t}^{\infty} \gamma^{i-t} r_i = r_t + \gamma^1 r_{t+1} + \dots + \gamma^n r_{t+n} + \dots$$

Total reward G_t , is discounted sum of future rewards

$$Q(s_t, a_t) = \mathbb{E}[G_t | s_t, a_t]$$

Q function captures expected future rewards an agent gets

starting from given state s_t and taking action a_t

What we want an RL agent to do?

$$Q(s_t, a_t) = \mathbb{E}[G_t | s_t, a_t]$$

Ultimately, agent needs to find policy $\pi(a | s)$ which learns to take best **action a** at any given **state s**.

$$\pi^*(s) = \arg \max_a Q(s, a)$$

Policy π needs to choose action which **maximize expected cumulative rewards**

Q function and Value function

$$Q(s_t, a_t) = \mathbb{E}[G_t | s_t, a_t]$$

state

action

Q = expected performance,

given s and a

$$V(s_t) = \mathbb{E}[G_t | s_t] = \mathbb{E}[Q(s_t, a_t)]$$

V = expected performance,

given s

Temporal Difference (TD) Learning

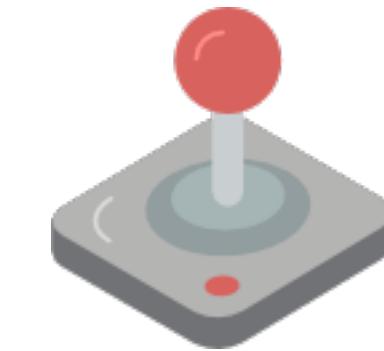
Temporal Difference (TD) learning updates value function by bootstrapping the **target** with 1-step value

$$\begin{aligned} V(s_t) &= \mathbb{E}[G_t | s_t] \\ &= \mathbb{E}[r(s_t) + \gamma r(s_{t+1}) + \dots | s_t] \\ V(s_t) &= V(s_t) + \alpha (r(s_t) + \gamma V(s_{t+1}) - V(s_t)) \end{aligned}$$

Policy Evaluations and Policy Control

Policy Evaluation

'How good is this policy?'



Policy Control

Policy Evaluations and Policy Control

Policy Evaluation

‘How good is this policy?’

Policy Control

‘What should I do to perform better?’

Policy Evaluations and Policy Control

Policy Evaluation

‘How *good* is this *policy*?’

Given $\pi \rightarrow \mathbb{E}_{a \sim \pi}[G_t | s = s_t]$

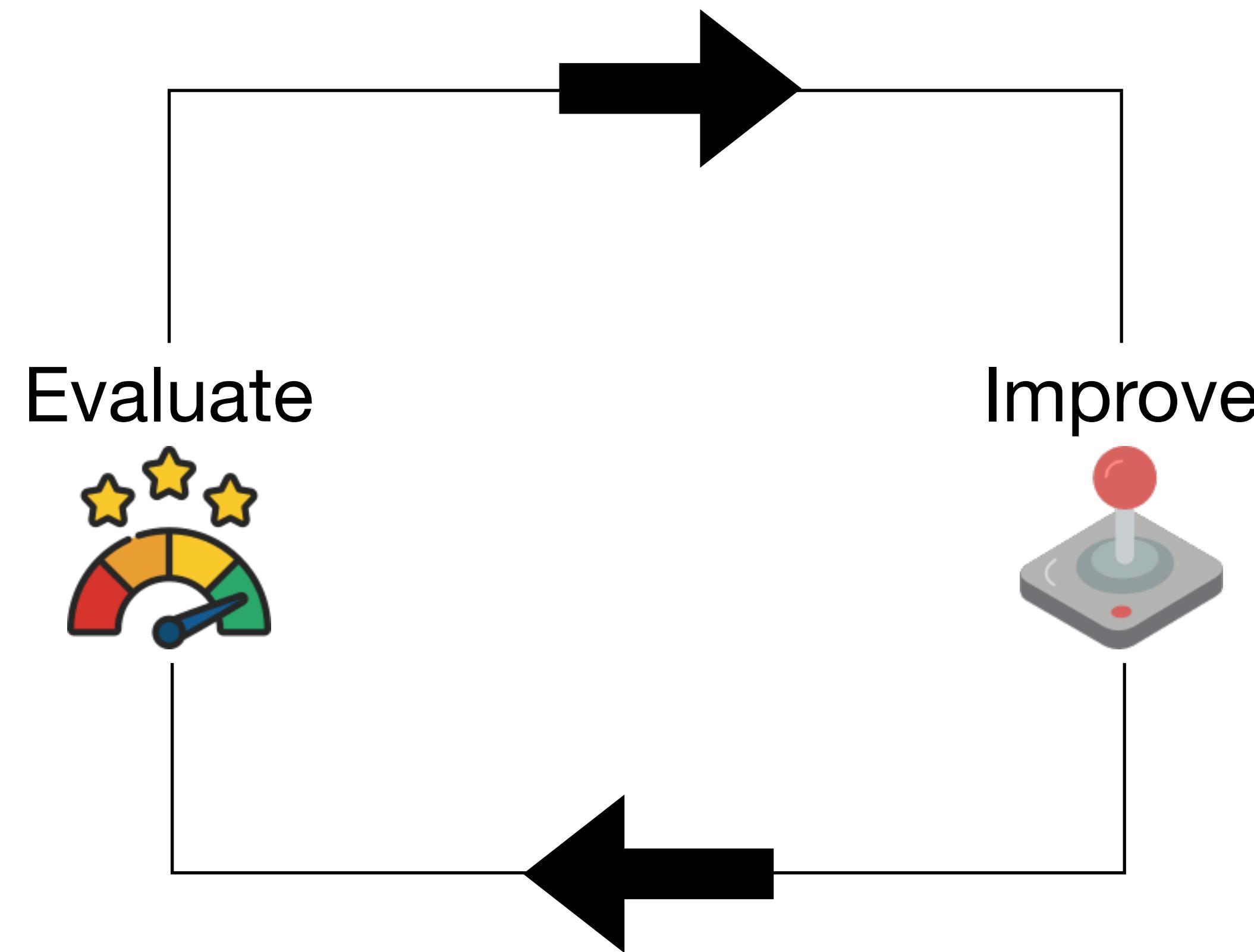
expected total reward
following policy π

Policy Control

‘What should I do to *perform better*?’

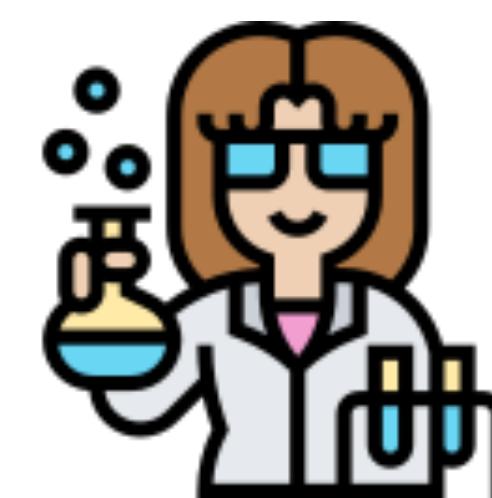
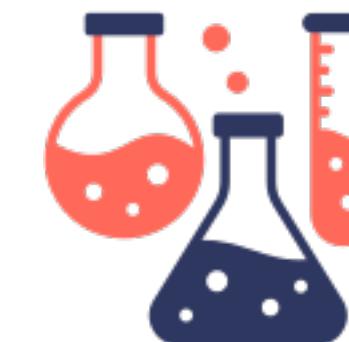
Given $\pi \rightarrow$ find *improved* π'

RL Loop



Why Policy Evaluation is important?

Examples



Hypothesis A

outcome?

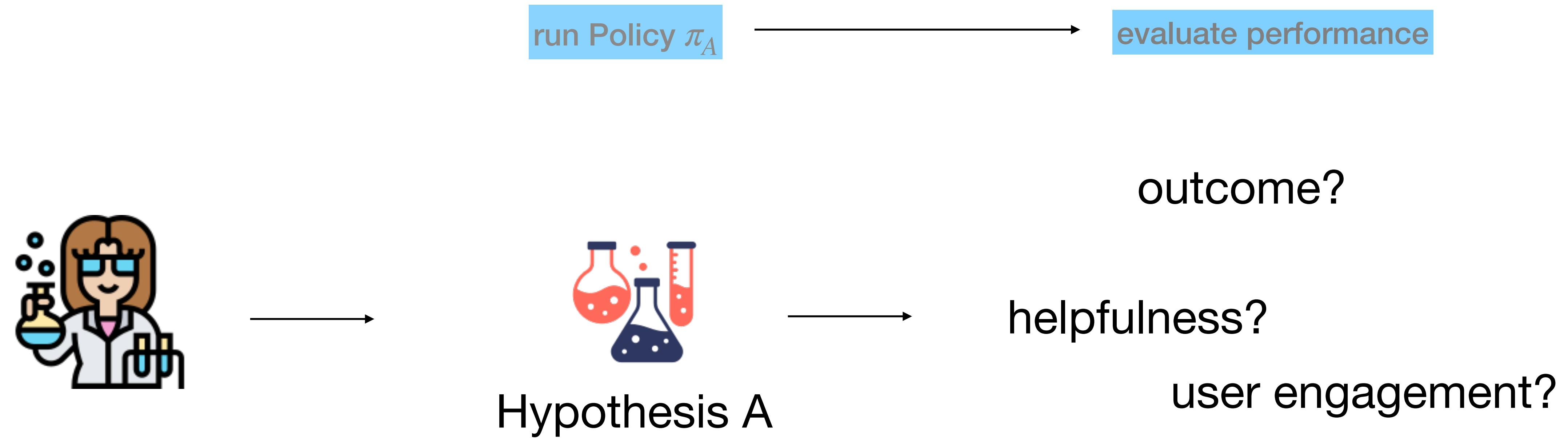
helpfulness?

user engagement?

‘copilot needs to evaluate effectiveness of policy’

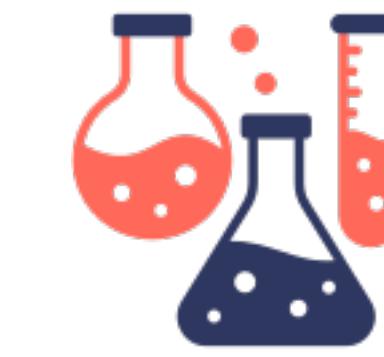
Why Policy Evaluation is important?

Examples

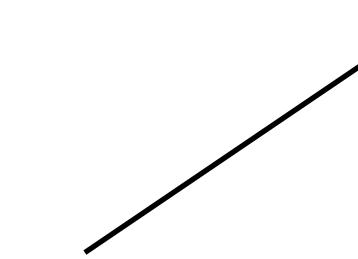


‘copilot needs to evaluate effectiveness of policy’

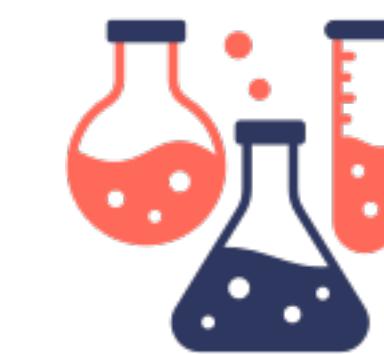
Think of multiple Policy Evaluation Examples



Hypothesis A



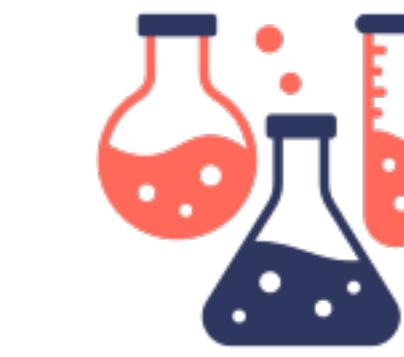
Hypothesis B



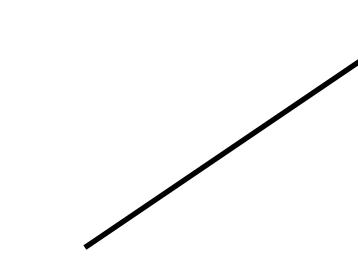
Hypothesis C

- successful auto reply to email
- summarization of long emails
- extracting tasks from meetings
- summarization of meetings

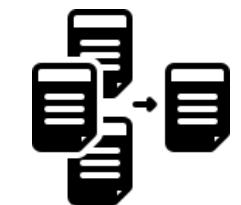
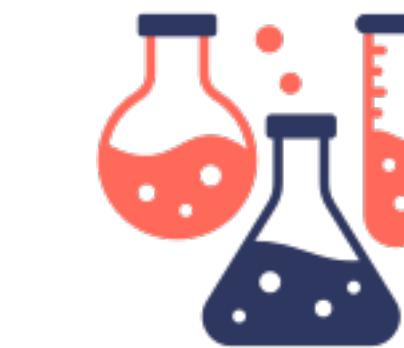
Think of multiple Policy Evaluation Examples



Hypothesis A



- successful auto reply to email
- summarization of long emails
- extracting tasks from meetings
- summarization of meetings



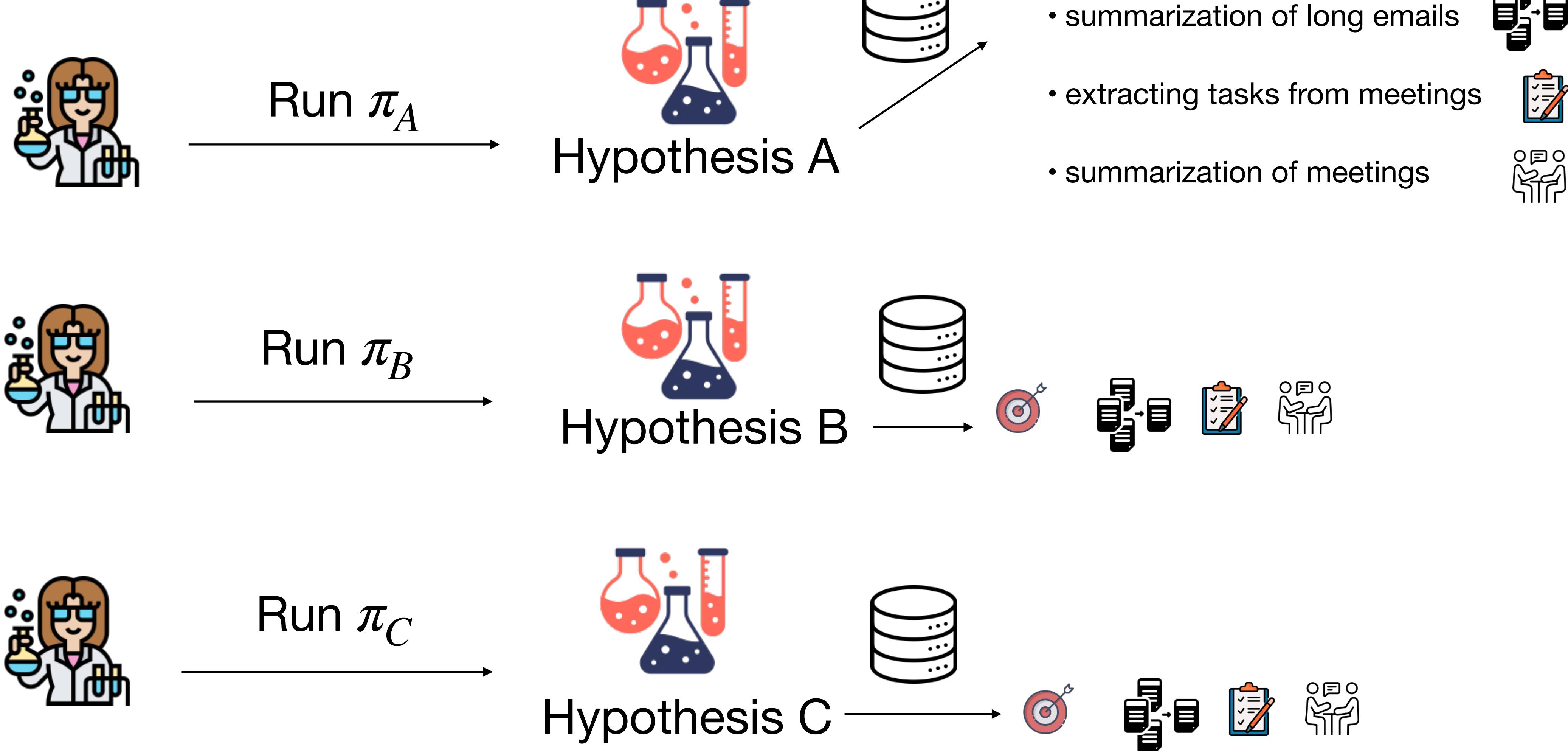
Hypothesis B



Hypothesis C

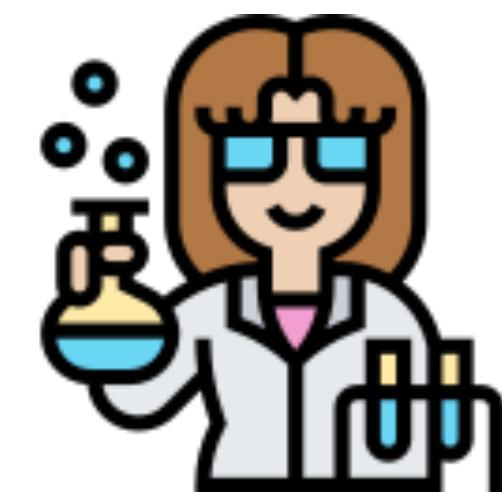
How to do multiple Policy Evaluation?

Examples

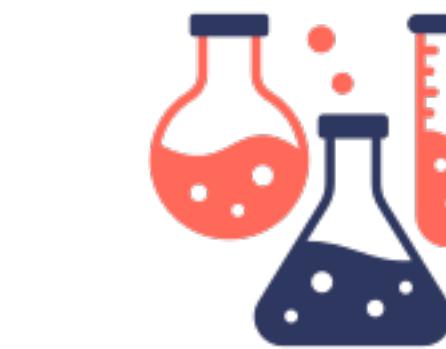


Problem: How to do multiple Policy Evaluation?

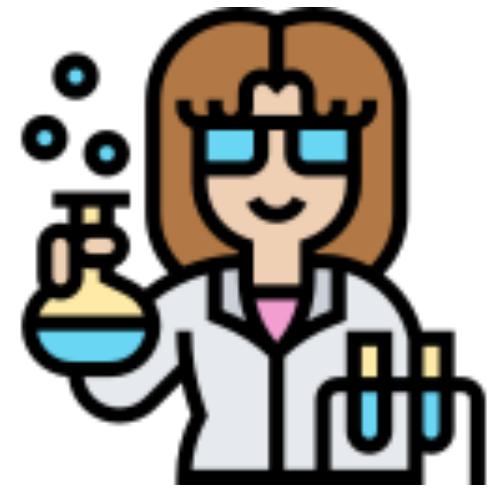
Examples



Run π_A

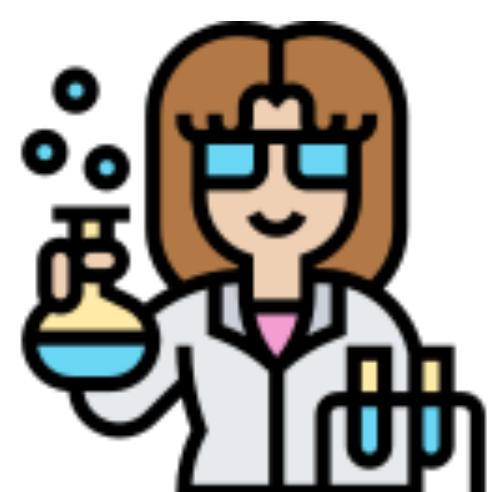


Hypothesis A

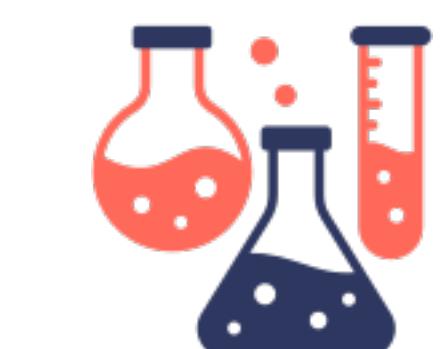


Run π_B

Hypothesis B



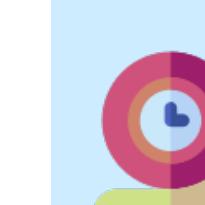
Run π_C



Hypothesis C

expensive data collection

safe/unsafe to run A/B testing



data collection can be slow

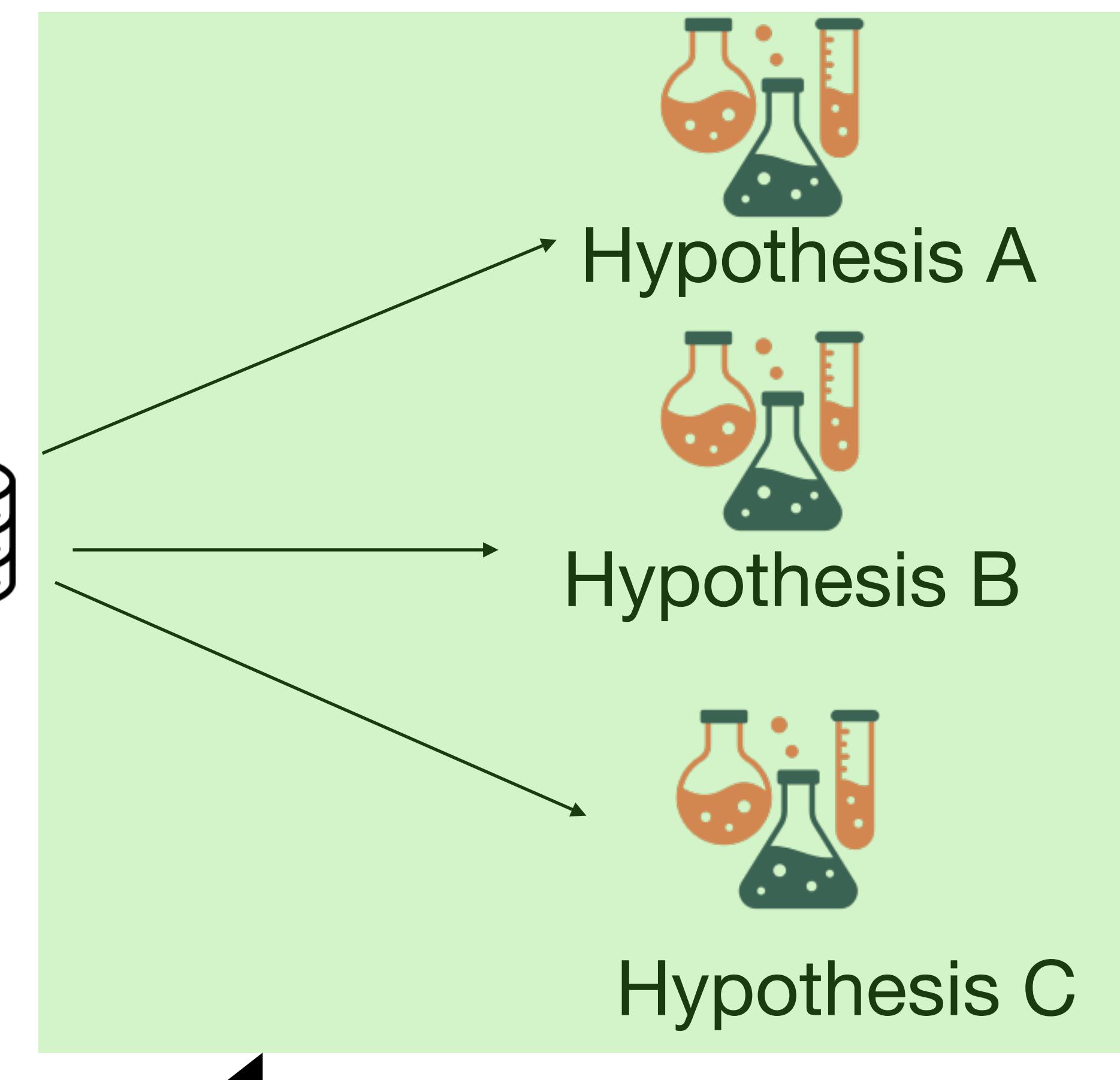
time consuming

How to evaluate many strategies
efficiently and know where we need more
data?

Our Solution

Adaptively learn single sampling policy, which collects data to evaluate multiple hypothesis in parallel.

Run policy μ



estimate how good policy A is by running another policy B

Off Policy Evaluation

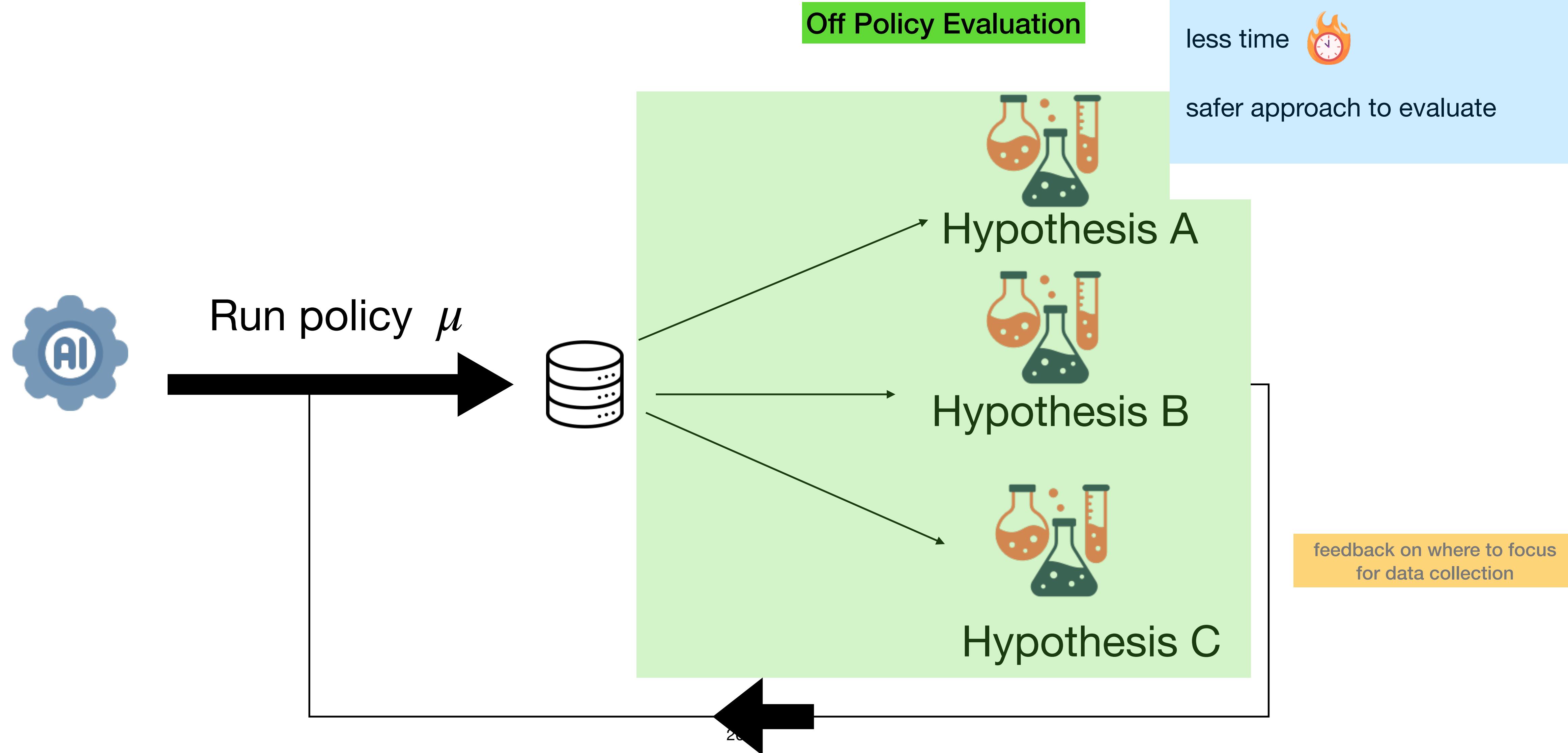
Hypothesis A

Hypothesis B

Hypothesis C

feedback on where to focus for data collection

Why THIS Solution?



What is the **Feedback** for self-loop?

Feedback = Variance

$$\pi(A) = 0.9 \longleftrightarrow \pi(B) = 0.1$$

$$r_A = 1$$

$$r_B = \mathcal{N}(1,0.5)$$

What is the Feedback for self-loop?

Feedback = Variance

$$\pi(A) = 0.9 \longleftrightarrow \pi(B) = 0.1$$

Goal: how good is this policy?

$$\mathbb{E}_{a \sim \pi}[r]$$

Monte-Carlo estimation
would need more data for correct
estimation of expected reward

What is the Feedback for self-loop?

Feedback = Variance

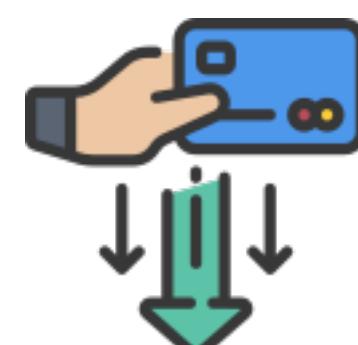
$$\pi(A) = 0.9 \longleftrightarrow \pi(B) = 0.1$$

Goal: how good is this policy?

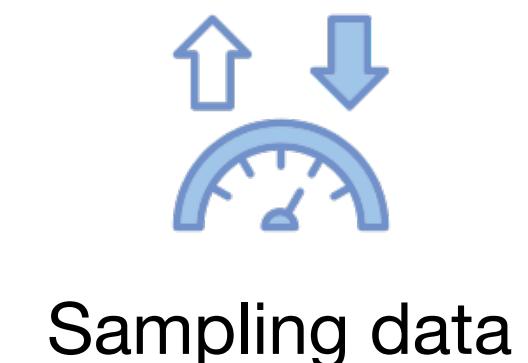
$$\mathbb{E}_{a \sim \pi}[r]$$

Monte-Carlo estimation would need more data for correct estimation of expected reward

Arm A is stable



Arm B is noisy



What is the Feedback for self-loop?

Feedback = Variance

$$\pi(A) = 0.9 \longleftrightarrow \pi(B) = 0.1$$

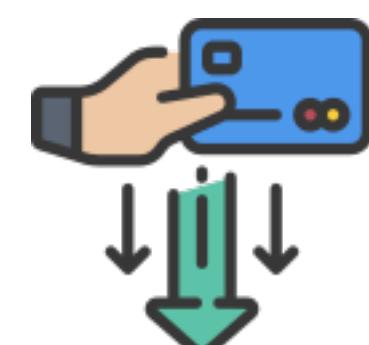
Goal: how good is this policy?

$$\mathbb{E}_{a \sim \pi}[r]$$

Monte-Carlo estimation
would need more data for correct
estimation of expected reward

Low
Variance

Arm A is stable



Sampling data

High
Variance

Arm B is noisy

Mathematical Formulation

Policy Evaluation of General Value Functions (GVFs)

Policy	π_1	π_2	π_3
Rewards	r_1	r_2	r_3
Evaluate expected total reward under policy	$\mathbb{E}_s[r_1 a \sim \pi_1]$	$\mathbb{E}_s[r_2 a \sim \pi_2]$	$\mathbb{E}_s[r_3 a \sim \pi_3]$

take action a following policy π_i

state

Mathematical Formulation

Policy Evaluation of General Value Functions (GVFs)

Policy	π_1	π_2	π_3
Rewards	r_1	r_2	r_3
Evaluate expected total reward under policy	$\mathbb{E}_s[r_1 a \sim \pi_1]$	$\mathbb{E}_s[r_2 a \sim \pi_2]$	$\mathbb{E}_s[r_3 a \sim \pi_3]$

GVF: Pair (π_i, c_i)

multi-step prediction : $\mathbb{E}[G_i | a \sim \pi_i]$

$$G_i = \sum_{t=0}^{\infty} \gamma^t c_t^{[i]}$$

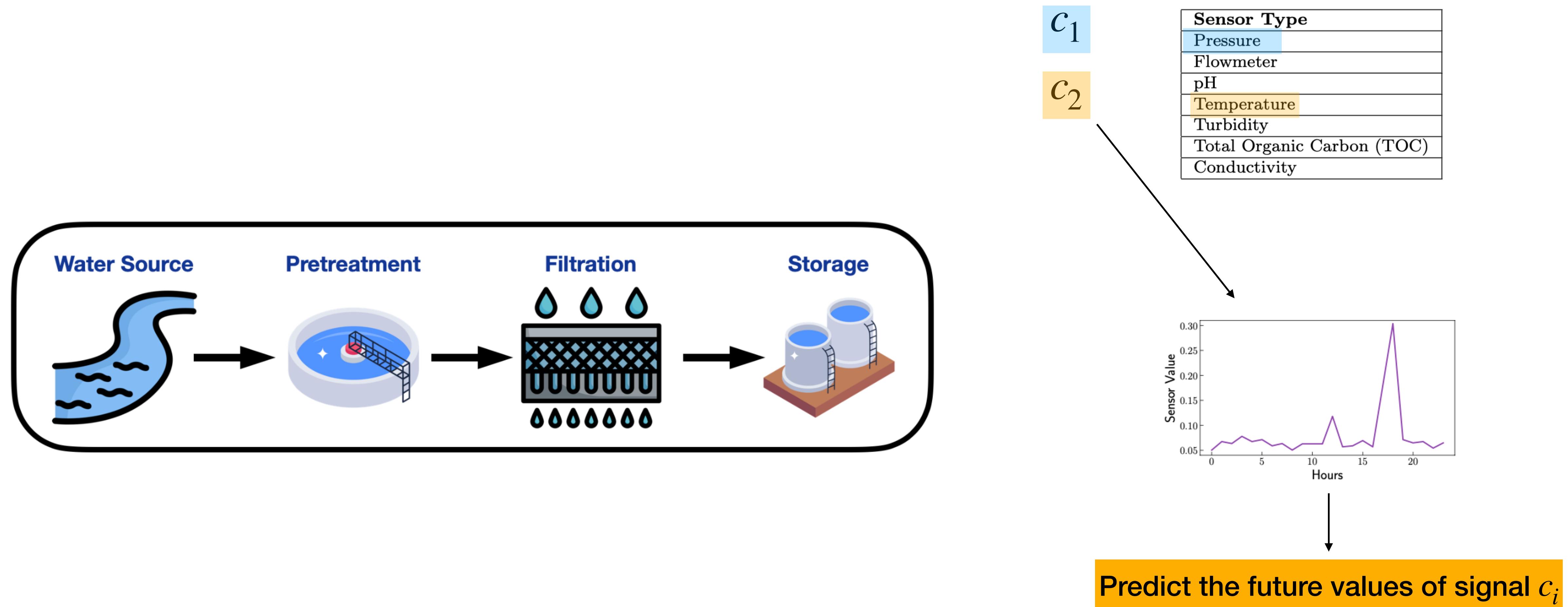
take action a following
policy π_i

state

any observable signal

Real World GVF Example

Water treatment Plant (Janjua et al. 2024)



Mathematical Formulation

Find sampling policy μ which minimizes sum of variance in rewards under different policy π_i

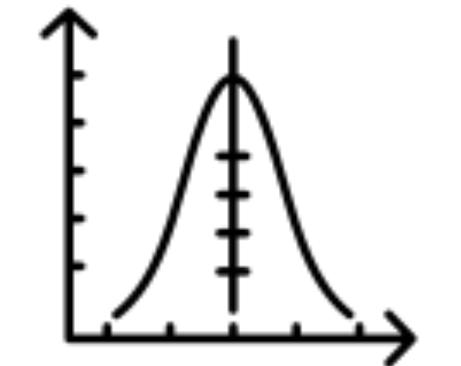
feedback in self-improving loop

$$\mu^* = \arg \min_{\mu} \sum_{i=1}^n \text{variance}_{a \sim \mu}(G_i, \pi_i)$$

sampling policy

Mathematical Formulation

sum of future rewards: $G_i = \sum_{t=0}^{\infty} \gamma^t r_t^{[i]}$



$$\mu^* = \arg \min_{\mu} \sum_{i=1}^n \text{variance}_{a \sim \mu}(G_i, \pi_i)$$

↓

sampling policy

policy π_i

Mathematical Formulation

sum of future rewards: $G_i = \sum_{t=0}^{\infty} \gamma^t r_t^{[i]}$



$$\mu^* = \arg \min_{\mu} \sum_{i=1}^n \text{variance}_{a \sim \mu}(G_i, \pi_i)$$

↓
sampling policy

policy π_i

Off-Policy Evaluation: run policy μ , but

estimate evaluate performance of policy π_i

Why minimize variance?

Minimize $MSE(\text{true perf.}, \text{estimate perf})$

$$= \text{Bias}^2 + \text{Variance}$$

Why minimize variance?

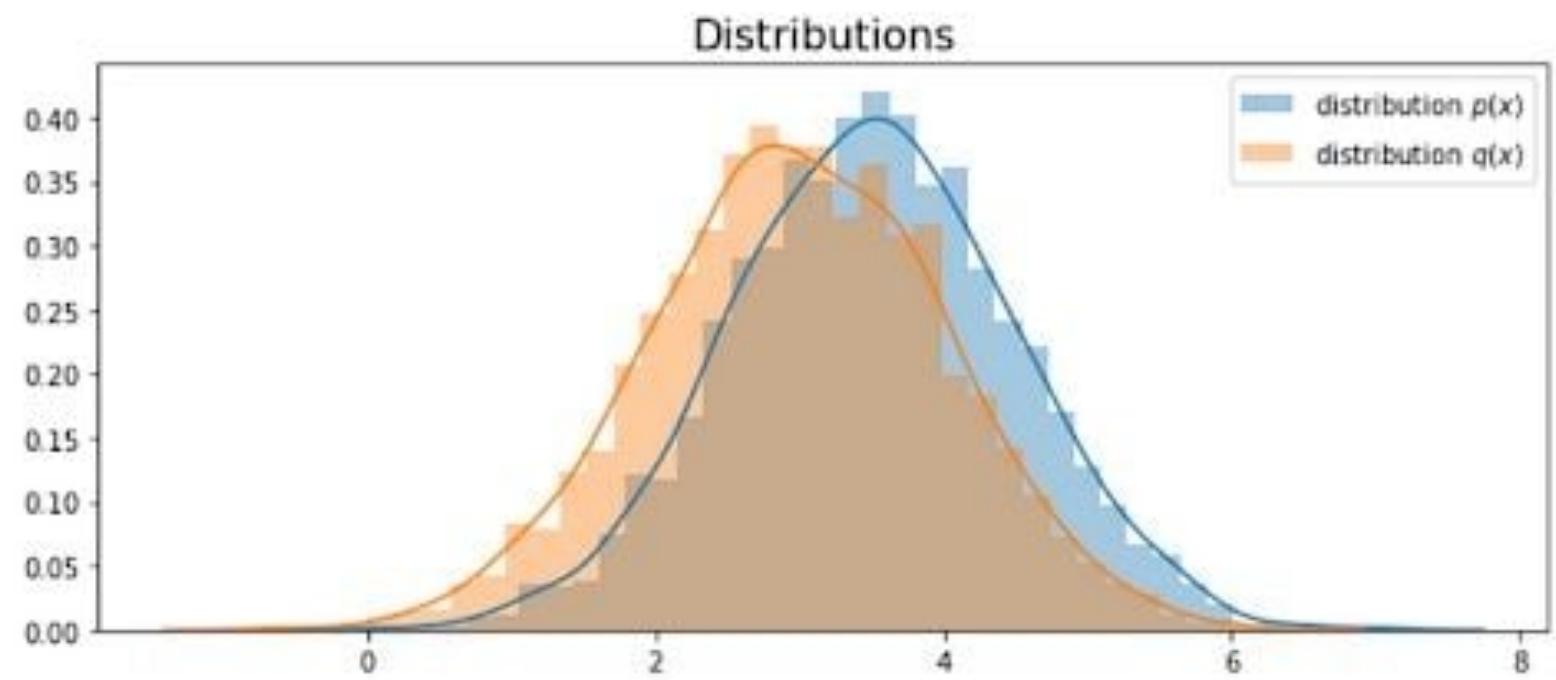
Minimize $MSE(\text{true perf.}, \text{estimate perf})$

$$= \cancel{\text{Bias}^2} + \text{Variance} \quad = \text{minimize Variance}$$

We will use **importance sampling** for off-policy correction = **unbiased estimates**

Importance Sampling

IS = unbiased estimator



$$\begin{aligned}\mathbb{E}[x | x \sim p] &= \frac{1}{n} \sum_i p(x_i) x_i \\ &= \frac{1}{n} \sum_i q(x_i) \times \frac{p(x_i)}{q(x_i)} x_i\end{aligned}$$

$$= \mathbb{E}\left[\frac{p(x)}{q(x)} x | x \sim q\right]$$

importance sampling (IS) correction

Sampling from q but
estimating expectation
under p

Variance Estimator

Jain et al., AAAI 2021

$$\mu^* = \arg \min_{\mu} \sum_{i=1}^n \text{variance}_{a \sim \mu}(G_i, \pi_i)$$

$$\text{variance}(G) = \mathbb{E}[(G - \text{expected perf } G)^2]$$

sum of future reward

We use TD estimator of variance
to build approximation of this measure

Variance Estimator

Jain et al., AAAI 2021

$$\mu^* = \arg \min_{\mu} \sum_{i=1}^n \text{variance}_{a \sim \mu}(G_i, \pi_i)$$

cumulative discounted rewards

$$\text{variance}(G) = \mathbb{E}[(G - \text{expected perf } G)^2]$$

We use TD estimator of variance
to build approximation of this measure

Why TD estimator?

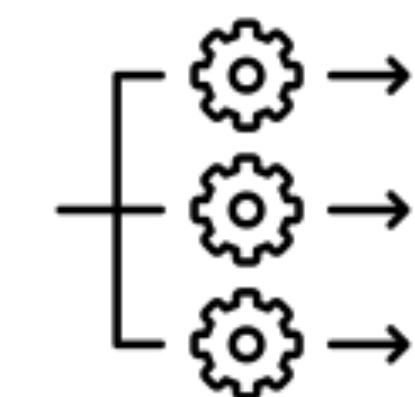
- Faster updates
- easy to scale in complex environments

Contributions

iteratively update
sampling policy

decrease in
prediction error
of performance

sample efficient



parallel task evaluations

Adaptive Sampling Policy

$$\mu^* = \arg \min_{\mu} \sum_{i=1}^n \text{variance}_{a \sim \mu}(G_i, \pi_i)$$

target policy: “*how good I am?*”

iterate

$$\mu_{k+1} = \frac{\sqrt{\sum_{i=0}^N \pi_i(a|s)^2 var_i^{\mu_k}(s, a)}}{\sum_{a'} \sqrt{\sum_{i=0}^N \pi_i(a'|s)^2 var_i^{\mu_k}(s, a')}}$$

sampling policy

normalization factor

Adaptive Sampling Policy

target policy: "how good I am?"

$$\mu^* = \arg \min_{\mu} \sum_{i=1}^n \text{variance}_{a \sim \mu}(G_i, \pi_i)$$

iterate

$$\mu_{k+1} = \frac{\sqrt{\sum_{i=0}^N \pi_i(a|s)^2 var_i^{\mu_k}(s, a)}}{\sum_{a'} \sqrt{\sum_{i=0}^N \pi_i(a'|s)^2 var_i^{\mu_k}(s, a')}}$$

sampling policy

normalization factor

sampling policy_{k+1} \propto target policy $\times \sqrt{\text{var(cumulative rewards)}}$

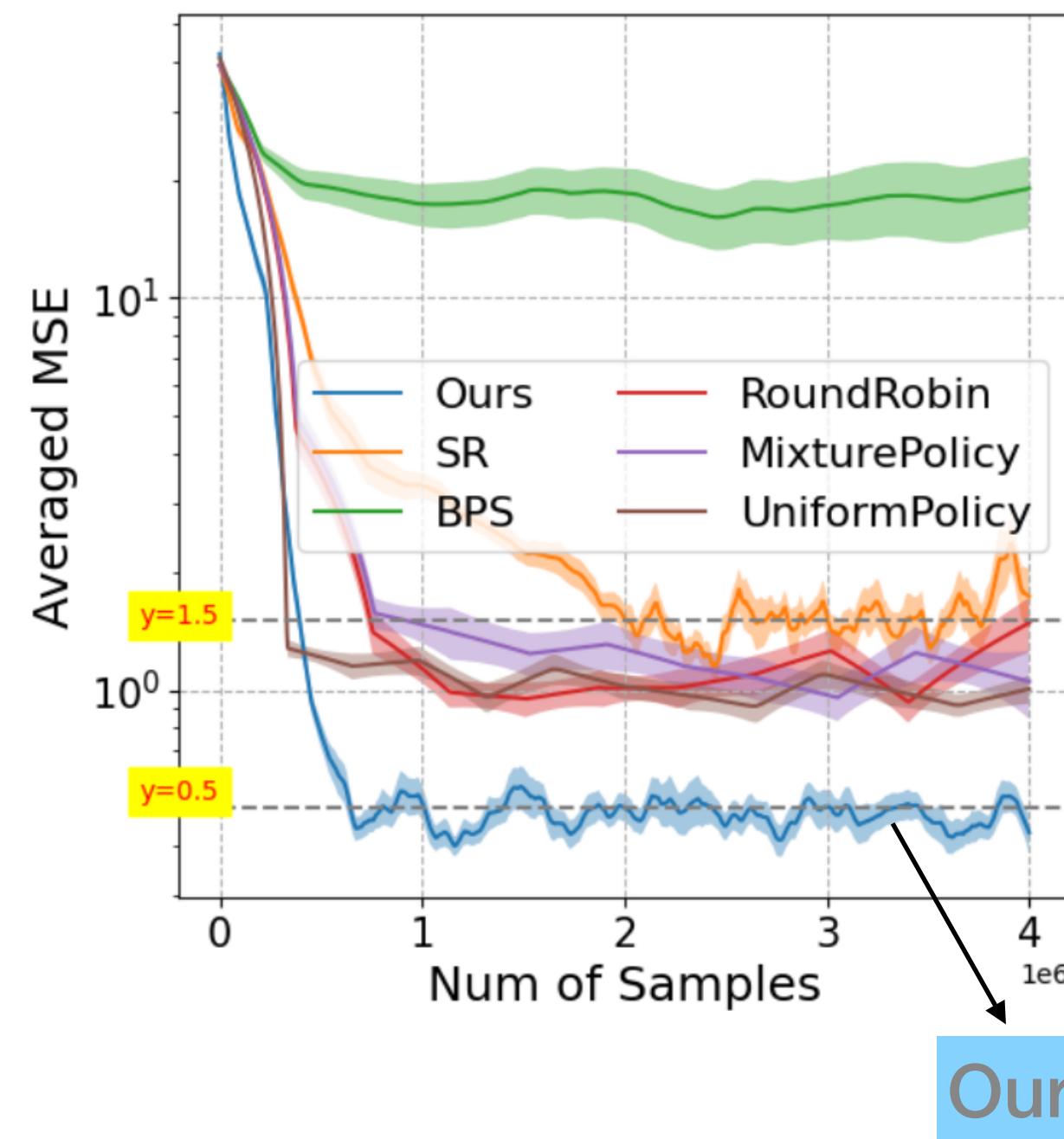
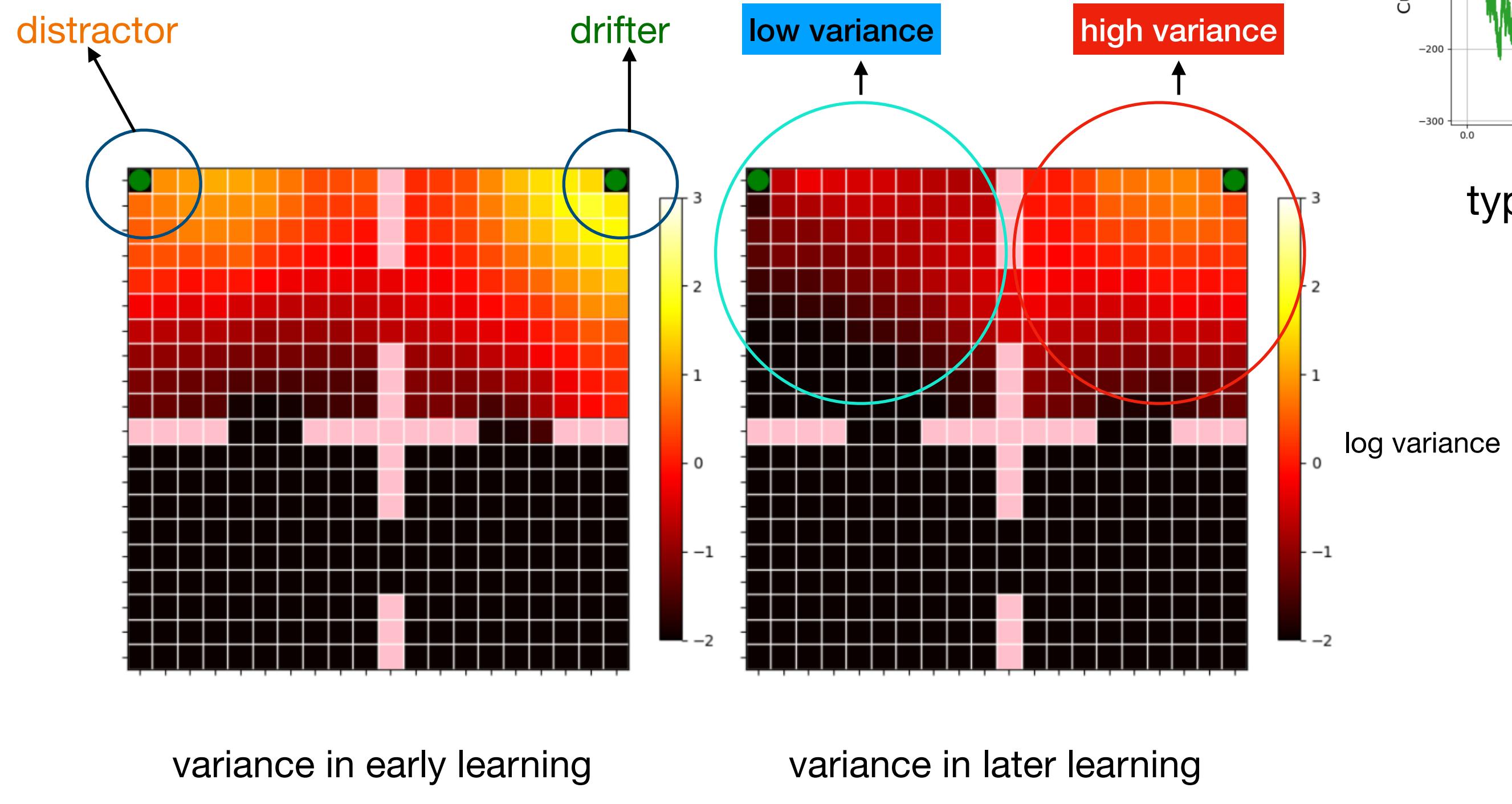
more data

less data

high uncertainty

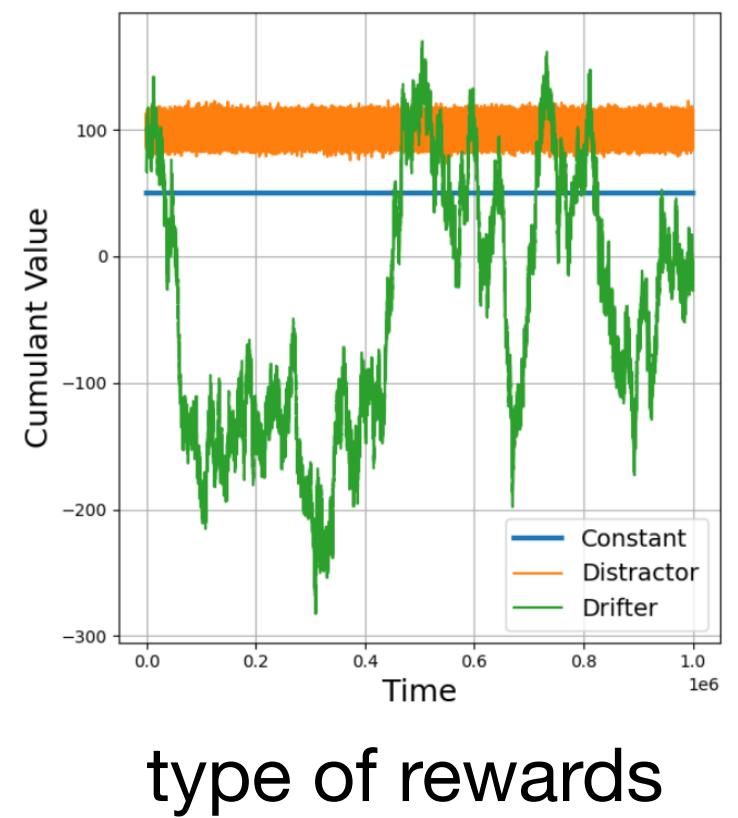
low uncertainty

Empirical Results



Lower MSE of performance is better

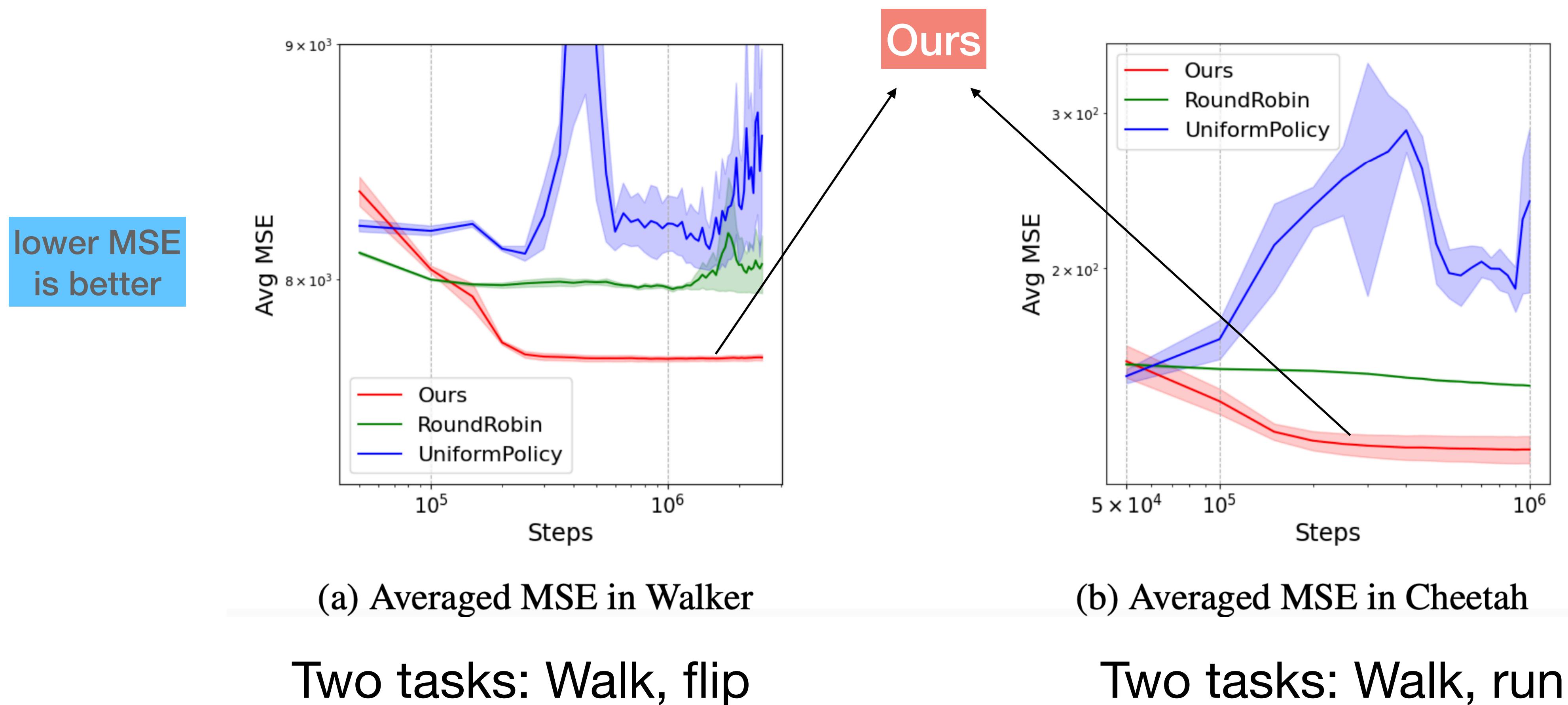
Our approach effectiveness in tracking
non-stationary reward signal



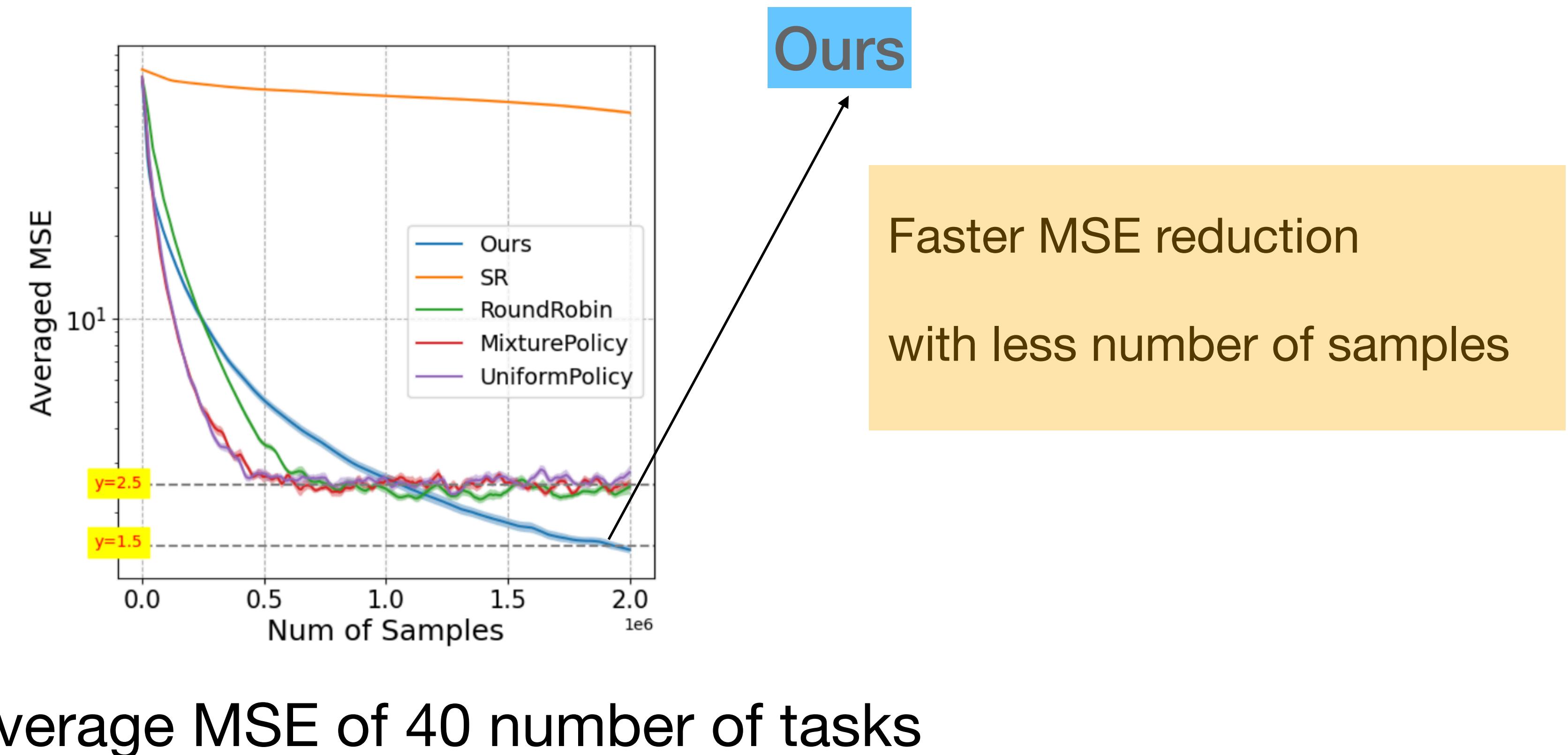
type of rewards

Mujoco Environments

Continuous states and actions

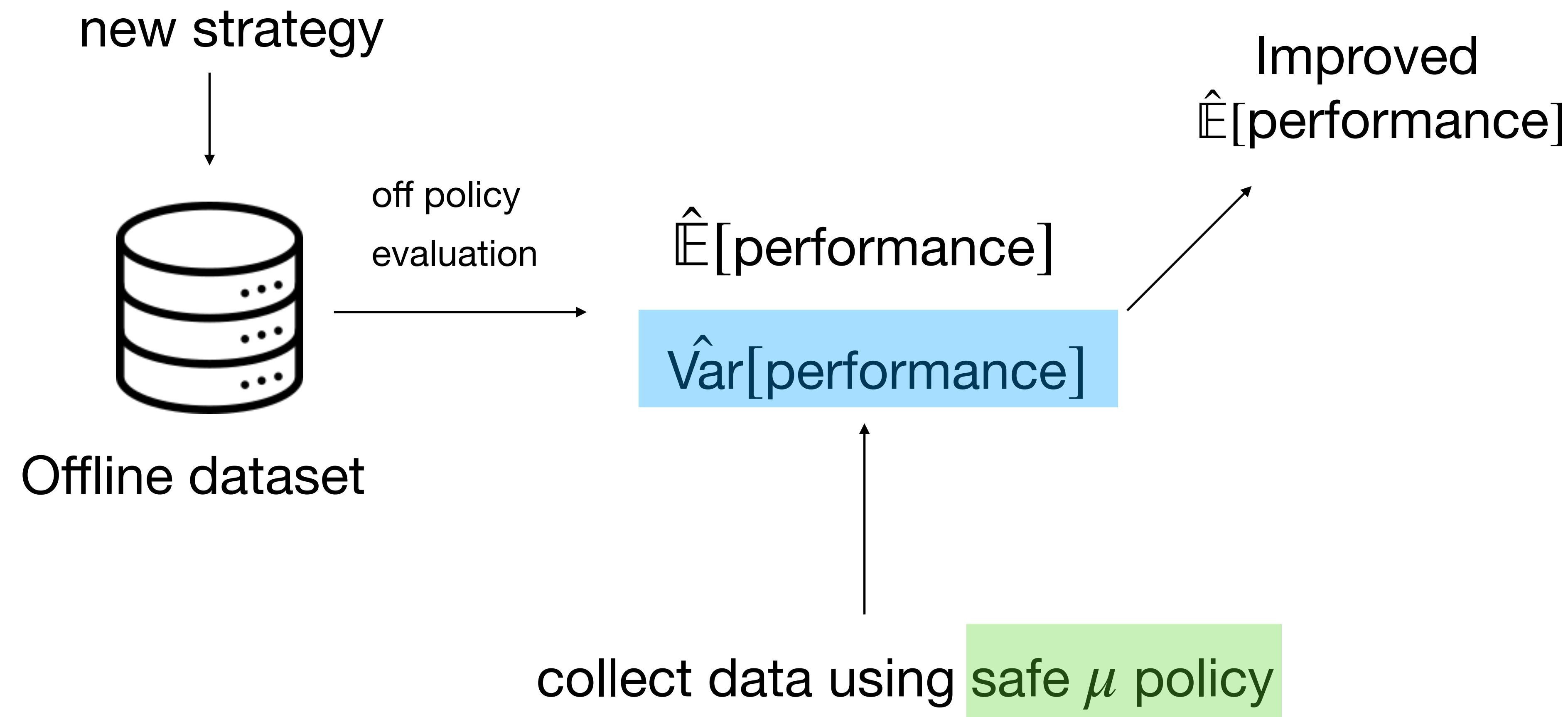


Higher number of parallel tasks



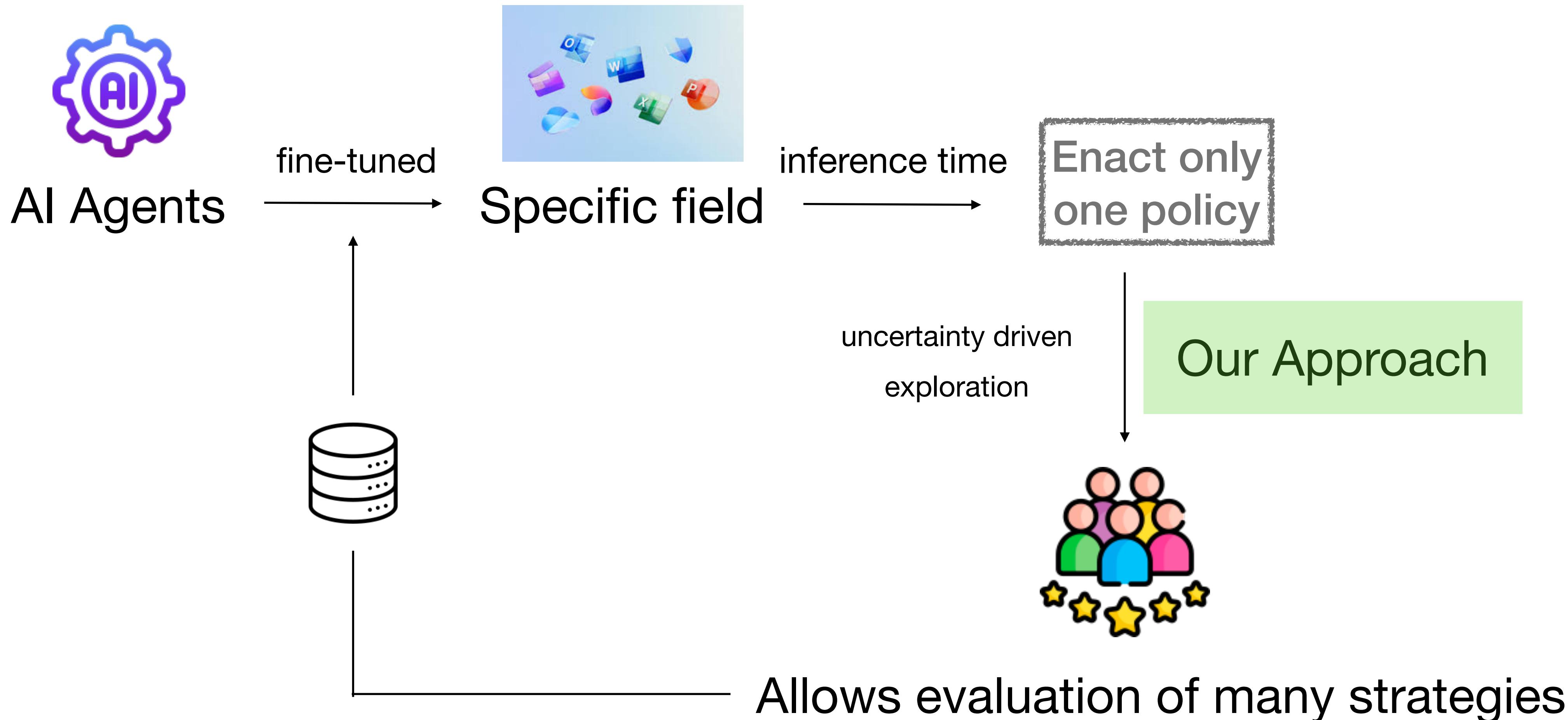
Other useful scenarios

Improving Offline Evaluations



Future Motivation

Evaluating many strategies from one acting policy



Thanks You!
arushi.jain@mail.mcgill.ca

Additional Slide

$$V(s) = \mathbb{E}[r_t + \gamma V(s_{t+1}) \mid s = s_t]$$

expected performance

$$Var(s) = \mathbb{E}[\delta_t^2 + \gamma^2 Var(s_{t+1}) \mid s = s_t]$$

variance in performance

$$\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$$

