Safe Policy Learning with Constrained Return Variance

Arushi Jain, Doina Precup

Reasoning and Learning Lab (McGill University), Mila Lab Montreal, Canada

What is Reinforcement Learning?

Learning by interacting with an environment to achieve a goal.

$$s_0, a_0, r_1, s_1, a_1, r_2, \dots$$
$$V_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=1}^{\infty} \gamma^t r_t | S_t = s \right]$$
$$= \mathbb{E}_{\pi} \left[r_t + \gamma V(S_{t+1}) | S_t = s \right]$$

Learning to perform a task in a hierarchical fashion using combinations of skills/options [Sutton et al. 1999]

Option o: 1. intra-option policy, 2. termination condition, 3. policy over options

Safe RL is a way of learning policies/behavior that not only maximize the expected return for reasonable performance but also respect certain safety constraints while learning or/and testing phase.

Which is a better policy? Red? Blue?

Novel safe hierarchical policy learning in SOTA **Option-Critic Architecture** [Bacon et al. 2017]

Safe Objective Function

$$J_{\text{Safe}}(\theta) = \mathbb{E}_{(s,o)}[V_{\theta}(s,o) - \psi \underbrace{\sigma_{\theta}(s,o)}_{\text{Constraint}}]$$

 θ : [intra-option policy, termination condition, policy over options] $\sigma(s, o) = \mathbb{E}[\delta_t^2 + \gamma^2 \sigma(S_{t+1}, O_{t+1}) | S_t = s, O_t = o]$: Variance in Return δ_t : TD error

 ψ : regularizer controlling *risk-seeking* or *risk-sensitive* behavior.

Automatic approach for learning a **safe-hierarchical-policy** in option-critic (OC) where **regularization** is placed on the **variance in return**.

The **Safe OC** is a scalable solution

- It is an online, model-free and continual learning approach.
- No prior knowledge required about the environment no need for knowing what safe or unsafe.
- Can be applied to general continuous state-action space and scales well to tasks in Mujoco environments.

Discrete Grid World

(a) Four Rooms Environment

(b) OC

(c) Safe-OC

ila

Discrete Grid World: Frequency Plots

(a) OC

(b) Safe-OC

Discrete Grid World

Added safety in proximal policy option critic (PPOC) [Klissarov et al. 2017] using constraint variance in return.

Video https://sites.google.com/view/safeoc/home.

- Novel **Safe** approach of learning policy in **Option-Critic** style methods.
- Constrained unsafe regions by **regularizing** the direct estimate of **variance in the return**.
- Scalable framework, comparable results as PPOC in Mujoco environments.

Future Work:

- Variable ψ value for different options/skills introducing diversity in behavior.
- More results!

- Novel **Safe** approach of learning policy in **Option-Critic** style methods.
- Constrained unsafe regions by **regularizing** the direct estimate of **variance in the return**.
- Scalable framework, comparable results as PPOC in Mujoco environments.

Future Work:

- Variable ψ value for different options/skills introducing diversity in behavior.
- More results!

