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What is Reinforcement Learning?

Learning by interacting with an environment to achieve a goal.
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What is Hierarchical Reinforcement Learning?

Learning to perform a task in a hierarchical fashion using combinations
of skills/options [Sutton et al. 1999

Option o: 1. intra-option policy, 2. termination condition, 3. policy
over options
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Why Safety?

Safe RL is a way of learning policies/behavior that not only

maximaize the expected return for reasonable performance but

also respect certain safety constraints while learning or/and
testing phase.
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Which is a better policy? Red? Blue?
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Safe Option Critic

Novel safe hierarchical policy learning in SOTA Option-Critic
Architecture [Bacon et al. 2017]

Safe Objective Function

JSafe(e) - IE(s,o) [‘/0(37 0) — ¢ 09(57 O) ]
N—_——

Constraint

0: [intra-option policy, termination condition, policy over options]
o(s,0) = E[62 +~v?0(Si11,0141)|S: = 5,0 = 0] : Variance in Return
d¢: TD error

Y: regularizer controlling risk-seeking or risk-sensitive behavior.
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Contribution of this work

Automatic approach for learning a safe-hierarchical-policy in
option-critic (OC) where regularization is placed on the variance in
return.

The Safe OC is a scalable solution
e It is an online, model-free and continual learning approach.

@ No prior knowledge required about the environment - no need for
knowing what safe or unsafe.

e Can be applied to general continuous state-action space and scales
well to tasks in Mujoco environments.
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Discrete Grid World

(a) Four Rooms
Environment
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Discrete Grid World: Frequency Plots
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(a) OC (b) Safe-OC
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Discrete Grid World
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(a) Learning Curve
red curve — Safe Policy
black curve — Unsafe Policy
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(b) Return Mean
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Mujoco environment: Continuous state-action

Added safety in proximal policy option critic (PPOC) [Klissarov et al.
2017] using constraint variance in return.
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Video https://sites.google.com/view/safeoc/home.
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https://sites.google.com/view/safeoc/home

Conclusion

e Novel Safe approach of learning policy in Option-Critic style
methods.

e Constrained unsafe regions by regularizing the direct estimate of
variance in the return.

@ Scalable framework, comparable results as PPOC in Mujoco
environments.

[ ]
1
~

20
o0
@S
K]
/|\
SN
- @
]

RJ

McGill University

[ J
!
~\,

11



Conclusion

e Novel Safe approach of learning policy in Option-Critic style
methods.

e Constrained unsafe regions by regularizing the direct estimate of
variance in the return.

@ Scalable framework, comparable results as PPOC in Mujoco
environments.

Future Work:

e Variable v value for different options/skills introducing diversity
in behavior.

@ More results!

[ ]
1
~

20
o0
@S
K]
/|\
SN
- @
]

RJ

McGill University

[ J
!
~\,

19



	Background
	OC
	Safety

	objective
	Contributions of this work
	Results
	Results

	Mujoco environment with continuous state-action space
	Conclusion

