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Abstract. It is desirable for a safety-critical application that the agent
performs in a reliable and repeatable manner which conventional setting
in reinforcement learning (RL) often fails to provide. In this work, we
derive a novel algorithm to learn a safe hierarchical policy by constraining
the direct estimate of the variance in the return in the Option-Critic
framework [2]. We first present the novel theorem of safe control in the
policy gradient methods and then extend the derivation to the Option-
Critic framework.
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1 Introduction

RL agents learn to solve a task by optimizing the observed return in a conven-
tional setting. While this approach produces the highest return in expectation,
it does not provide any constraints on the distribution of the return, making it
a vulnerable strategy for the risk-sensitive domains. Safety in AI systems can be
defined in several ways [1] - safe exploration, reward hacking, etc. Our notion of
safety emphasizes on minimizing the erratic or harmful behavior of an agent -
by introducing the constraints on the variance in the return. The variance in the
return reflects the uncertainty in the value function which makes an agent be-
have inconsistently. Therefore, the unsafe states which exhibit harmful or abrupt
behavior would have a higher variance in the return.

[6, 9, 11, 10, 5] used the estimate of the variance in λ-return by the indirect
second-order moment method or directly estimated the cost-to-go returns with
the updates provided after completing the entire trajectory. [8] came up with
a direct estimation of the variance in the λ-return using a Bellman operator in
the policy evaluation methods. [4] used the variance in the temporal difference
(TD) error to identify the controllable states in the option-critic framework.

In our preliminary work, we first came up with a Bellman operator to directly
estimate the variance in the return given a state-action pair and learn a safe
policy in control setting for actor-critic methods. Taking inspiration from this
work, we extended the Bellman operator of variance to option-critic setting and
introduce a safe hierarchical policy learning approach.
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2 Background

In a Markov Decision Process (MDP), an agent interacts with the environment in
discrete time steps t, where the agent takes an action a∈A, transitions from state
St to state St+1, and receives an immediate reward Rt+1 from the environment.
The expected reward is R(St, At) =

∑
r∈R r

∑
s′ P (s′, r|St, At) where R : S ×

A→ R. The environment dynamics is modeled by P (St+1|St, At), where P : S×
A×S → [0, 1]. A stochastic policy π(At|St) determines the probability of taking
an action in a given state. The MDP is represented by a tuple 〈S,A, P,R, γ〉,
where γ ∈ [0, 1] is a discount factor.

3 Safe Actor-Critic (Safe AC)

Let the policy be given by πθ(a|s), where θ is the parameter of the policy.
Extending the work by [8], the Bellman of the variance in the return given a
state-action pair σπ(s, a) is similarly given by:

σπ(s, a) = Eπ
[
δ2t + γ̄σπ(St+1, At+1)

∣∣St = s,At = a.
]

(1)

where γ̄ = γ2λ2, λ is the trace-decay parameter and δt is the one-step TD error.
The proof for the above equation is left because of the space limitation. The new
safe objective function now becomes:

Jd(θ) = Ed,π
[∑

a

πθ(a|s)
(
Qπ(s, a)−ψσπ(s, a)

)
.
]

(2)

where ψ is the penalty coefficient. Here we aim to maximize the mean of the
return along with minimizing the variance in the return in order to learn con-
sistently behaving policy. Following the policy gradient theorem, the update for
the gradient of the new safe objective function is:

∇θJd,π(θ) = Eπ
[
∇θ log πθ(At|St){Qπ(St, At)−ψσπ(St, At)}

]
(3)

4 Safe Option-Critic (Safe OC)

Keeping similar notions to Option-Critic Architecture [2], an option w ∈ W is
defined as a tuple (Iw, πw, βw); where Iw contains the initial states set where
an option can start, πw is the option policy defining a distribution over action
space and βw determines the termination probability of an option in a state. The
policy over the options is denoted by µ(w|s). Let Θ = [θ, ν, κ] be the parameters
of intra-option policy, termination condition and policy over options respectively.

Let us consider Zt = (St,Wt) as an augmented state space, a space of state-
option pair. Similar to the (1), the variance given a state-option-action is denoted
by:

σπ,µ(z, a) = Eπ,µ[δ2t + γ̄σπ,µ(Zt+1, At+1)|Zt = z,At = a] (4)
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The safe objective for the option-critic is similar to (2) where state is replaced
with augmented states space and ψz represents the regularizer for the variance.
The updates for the parameters are shown below where blue color highlights the
change from [2] due to the safe objective function. The intra-option gradient is:

∇θJ(Θ) =Ed,Θ
[∑

a

∇θπθ(a|z)
(
Qπ,µ(z, a)−ψz σπ,µ(z, a)

)]
(5)

The termination function gradient update is given by:

∇νJ(Θ) =Ed,Θ[−∇νβν(s′, w)
(
Aπ,µ,Q(s′, w)−ψz Aπ,µ,σ(s′, w)

)
] (6)

where Aπ,µ,σ(s
′, w) = σΘ(s′, w) − σΘ(s′) is the advantage function for the

variance similar to the value function. The update for the policy over options is
provided by:

∇κJ(Θ) =Ed,Θ[βν(s′, w)
∑
w′

∇κµκ(w′|s′)
(
QΘ(s′, w′)−ψs′,w′ σΘ(s

′, w′)
)
] (7)

5 Experiments

We first performed the experiments in Safe Actor-Critic to see the effect of the
safety and later show a tabular experiment in Safe Option-Critic to show the
concreteness of the proposed algorithm. We added an unsafe frozen region (F )
in one of the hallway in the discrete tabular four rooms (FR) environment [2]
which has a normal reward distribution from N (µ = 0, σ = 8). A different action
from the one intended by the policy is taken with 0.2 probability. The agent can
be initialized from anywhere in the state space and the reward of 50 is received
when the agent reaches the goal state denoted by G in the Fig. 1 The reward for
all the other states is kept 0. In expectation, the reward for both the hallways
is 0.

Safe AC: Fig. 1 depicts that using the safe framework (red plot), the vari-
ation in the return decreases highlighting that the agent reduces the visits to
the variable reward region. The sampled policy from both the baseline and the
safe method shows that agent takes a round about path to reach the goal state
to avoid the frozen region. The risk-averse policy would generally exhibit faster
convergence speed due to decrease in visits to inconsistent regions. If the learning
curve is extended over a period of time, the risk-neutral would achieve higher
or at par mean performance compared to the risk-averse as the penalty term
is not part of the baseline. The learning curve for the experiments using non-
linear approximation in Mujoco OpenAI Gym [3] environments are shown in the
Appendix to show the scalability of the algorithm.

Safe OC: Using the same four rooms environment, we compare the perfor-
mance of the Safe OC with the baseline OC using 4 options. The code was built
on top of Option-Critic baseline. Fig. 2 represents the state visitation frequency
of the agent, where the Safe OC shows a lower frequency in the frozen hallway.
This depicts that safe agent learns to avoid erratically behaving region. The per-
formance using the learning curve and the absolute TD error are shown in the
appendix.



4 Arushi Jain

(a) Learning Curve (b) AC Policy (c) Safe-AC Policy

Fig. 1: Safe AC in FR domain: a) Averaged performance over 50 trials where
the vertical bands depict the standard deviation demonstrating that safe meth-
ods (ψ > 0) have lower variation in the return. Sampled policy using b) baseline
actor-critic, c) safe actor-critic method. The unsafe region is depicted by the red
color.

(a) OC State
Frequency

(b) Safe-OC State
Frequency

Fig. 2: State Frequency in FR domain: Shows the state visitation count in
100 sampled trajectories in testing phase. The darker shade represents the higher
frequency. Safe OC learns to avoid the frozen hallway showcasing lighter shade
in F region.

6 Conclusion & Future Work

In this work, we presented a generic safe policy learning framework which learns
a consistently behaving policy by constraining the direct estimate of the vari-
ance in the return. We first presented the safe policy gradient style update in
the primitive action space and then extended this framework to the hierarchi-
cal option-critic format. Our approach provides an incentive to the agent which
minimize the visits to the inconsistently behaving regions. This framework pro-
vides the capability to overcome the variability introduced by the environment
dynamics.

The future step is to experiment with the safe option-critic framework using
the non-linear function approximation in problems like Mujoco and ALE do-
mains. The other step is to explore in the direction of variable value of ψz, ∀z ∈ Z
such that each options can have a different value of ψ, the importance factor for
learning a safe policy.
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Appendix

We experimented with the safe objective with the proximal policy optimization
(PPO) [7] algorithm using safe actor-critic framework in Mujoco environments
[12]. In all the experiments for Safe-OC, ψz is kept to a constant value for all
z ∈ Z.
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(a) Half Cheetah (b) Humanoid

Fig. 3: Learning curve in Mujoco environments for Safe AC: The graphs
depict the scores over multiple trials: a) 20 trials for Half Cheetah; b) 5 trials
for Humanoid environment. The bands represent the standard deviation of score
across different trials. ψ = 0 (black) represents the baseline PPO without safety.
For the best performing safe architectures (red) a) ψ = 0.15, b)ψ = 0.1, we
observe a reduction in the standard deviation of score compared with baseline.
The comparison across the averaged standard deviation of score for different ψ
are shown in bottom right of the graph where reduced variance indicates the
consistency in the performance.

(a) Learning Curve (b) Absolute TD Error

Fig. 4: Safe OC in FR domain: The graphs shows the averaged performance
over 100 runs. Shows a) return, b) sum of absolute TD error. The safe policy
(red) has smaller standard deviation (vertical bands) compared to the baseline.
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(a) OC (b) Safe OC

Fig. 5: Safe OC in FR domain: The change in color represents the switch
among 4 options. The purple region in upper hallway represents the frozen hall-
way. The graphs shows the sampled trajectory of a) baseline OC, b) Safe OC.
The model without safety takes the shortest path to reach the goal state depicted
by G, whereas the safe model takes a round about path to reach the goal.


