ARUSHI JAIN

Mila, McGill University, Montreal, Canada

arushi.jain@mail.mcgill.ca <> https://arushijain94.github.io/

RESEARCH INTERESTS

Reinforcement Learning (RL), Safe RL, Off-Policy RL, Constrained MDPs.

EDUCATION

Ph.D., Computer ScienceGPA: 4.0MSc, Computer ScienceGPA: 4.0	
MSC, Computer Science GPA: 4.0	
7.611	00/4.00 Sept 2017 - Sept 2019
Mila	
Supervisor: Doina Precup, <u>Pierre-Luc Bacon</u>	

Bachelor of Technology, Computer Science and Engineering GPA: 9.42/10.00 Aug 2012 - May 2016 Image Analysis and Biometrics (IAB) lab Supervisor: Mayank Vatsa, Richa Singh

AWARDS

• Bourse du Centre de Recherche Informatique de Montréal (CRIM) pour Études Supérieures (2018-2019) Graduate Scholarship provides financial support to only one master and a doctoral student.

PUBLICATIONS

- 1. Variance Penalized On-Policy and Off-Policy Actor-Critic[Paper][Poster][Slide] Arushi Jain, Gandharv Patil, Ayush Jain, Khimya Khetarpal, Doina Precup Accepted to the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI), 2021.
- Safe Option-Critic: Learning Safety in the Option-Critic Architecture [Paper] [Poster] [Slide] Arushi Jain, Khimya Khetarpal, and Doina Precup Accepted in Adaptive Learning Agents (ALA), ICML Workshop, 2018. Accepted in The Knowledge Engineering Review (KER) Journal 2021. [Impact Factor 1.07]
- Safe Actor-Critic[Paper][Poster][Slide] Arushi Jain, Ayush Jain, and Doina Precup Accepted in Safety, Risk and Uncertainty in RL, Uncertainty in AI (UAI) Workshop, 2018. Accepted in Women in ML (WiML), (NeurIPS) Workshop, 2018.
- 4. Learning Options using Constrained Return Variance[Paper][Poster] Arushi Jain and Doina Precup

Accepted in Safety and Robustness in Decision Making, NeurIPS Workshop 2019.

5. Safe Policy Learning with Constrained Return Variance[Paper][Poster] Arushi Jain

Accepted in Graduate Student AI Symposium held at **Canadian AI Conference** 2019. The proceeding is also published in the **LNAI** Series by Springer Verlag.

- Safe Hierarchical Policy Optimization using Constrained Return Variance in Options[Paper] Arushi Jain, Doina Precup Accepted at RLDM 2019.
- Safety using constraint variance in policy-gradient methods[Thesis] Arushi Jain Master Thesis, McGill University, Montreal, March 2020.

RESEARCH & WORK EXPERIENCE

Mila, RL Lab, McGill University

Graduate Student advised by Prof. Doina Precup, Pierre-Luc Bacon

- Real-world tasks with different competing objectives or constraints, it is not always feasible to evaluate the performance of a given policy/behavior. For example, one wants to assess the performance of a given policy in recommendation systems. However, allowing a potentially bad policy that does not abide system's constraints to interact with customers can lead to unpredictable losses. To overcome this problem, we propose to predict by learning from a different **off-policy** that follows constraints and also leads to smaller variability in the performance than the standard on-policy approach.
- We designed a novel and generic **on-policy and off-policy safe actor-critic** framework to learn safe policies such that objective function trades off between minimizing the effects of model uncertainty and maximizing the mean return.
- We worked on introducing novel safety solutions in Options (hierarchical RL) by deriving a policy-gradient algorithm where variance in the temporal difference (TD) error is regularized.

Mila, Amii

Mentored by Sharan Vaswani, Reza Babanezhad

We study planning in infinite horizon Constrained MDPs, where we use parameter-free algorithm from online linear optimization to learn both the policy and follow the constraints. Unlike gradient descentascent methods, it does not require parameter tuning.

SPORTLOGiQ, Montreal, Canada

RL Research Intern mentored by Norm Ferns

Worked on formally comparing and contrasting the agents in a given Markov Decision Process (MDP) by coming up with behavioral pseudo-metrics following the work on *lax-bisimulation*.

Borealis AI, Edmonton, Canada

AI Research Intern mentored by Nidhi Hedge

Worked on **safe recommendations** in RL setting which would help provide recommendations with certain guarantees. This would provide life-long learning as well as long-term goal maximization which would be particularly useful in financial applications.

Microsoft Research (MSR), India

Research Fellow advised by Sundararajan Sellamanickam, Arun Iyer

• Developed a **service monitoring and diagnostic tool** for unsupervised hierarchical monitoring of services which replaced a heuristic-based system failing to jointly model multivariate time-series.

• Worked on **entity matching problem across heterogeneous sources** with missing data in the source.

• Worked on **email solutions using DNN** to build intelligent approaches to solve problems like multi-label classification, learning a useful representation of email content, etc.

September 2017 - Present

August 2021 - Present

June 2019 - Sept 2019

May 2018 - Aug 2018

June 2016 - July 2017

TECHNICAL SKILLS & COURSEWORK

Programming Languages: Python, Tensorflow, Pytorch, C

Coursework: Reinforcement Learning, Probabilistic Analysis of Algorithms, Applied ML, Theoretical ML, Probabilistic Graphical Modeling, Matrix Computation, Mathematical Foundation of ML, Reinforcement Learning and Optimal Control.