

Variance Penalized On-Policy and Off-Policy Actor-Critic

Arushi Jain, Gandharv Patil, Ayush Jain, Khimya Khetarpal, Doina Precup

Motivation

Sequential decision-making under uncertainty

(a) Medical diagnosis

(b) industrial automation

(c) Portfolio management

Notation

Markov Decision Process

- **MDP** is tuple of $\langle S, A, \mathcal{R}, P, \gamma \rangle$
- Infinite horizon discounted setting
- S: set of states
- A: set of actions
- **R** $_{t+1}$: reward at t time step
- **P** $(\cdot|s, a)$: transition probability distribution
- γ: discount factor
- $G_t = \sum_{l=t}^{\infty} \gamma^{l-t} R_{l+1}$: discounted return

Notation

Let policy be parameterized by θ : π_{θ} .

$$egin{aligned} \mathcal{V}_{\pi_{ heta}}(s) &= \mathbb{E}_{\pi_{ heta}}\left[G_t|S_t=s
ight] \ \mathcal{Q}_{\pi_{ heta}}(s,a) &= \mathbb{E}_{\pi_{ heta}}\left[G_t|S_t=s, \mathcal{A}_t=a
ight] \end{aligned}$$

Risk Neutral Objective

$$J_{d_0}(heta) = \sum_s d_0(s) V_{\pi_ heta}(s)$$

■ $d_0(s)$: initial state distribution

Risk-Sensitive Criteria

Looking at a criteria where variability is penalized.

- **1** Stochasticity in Reward & Transition Risk-Sensitive MDPs.
- Imperfect knowledge about model Robust MDPs.

$$G_t = \sum_{l=t}^{\infty} \gamma^{l-t} R_{l+1}$$

Return: a random variable

Here, we use variance as way to measure variability.

Risk-Sensitive Criteria

Indirect Variance (Sobel, 1982)

$$\operatorname{Aar}_{\pi}(G) = \mathbb{E}_{\pi}[G^2] - \mathbb{E}_{\pi}[G]^2$$

Uses second moment of return.

Risk-Sensitive Criteria

Indirect Variance (Sobel, 1982)

$$\operatorname{Ar}_{\pi}(G) = \mathbb{E}_{\pi}[G^2] - \mathbb{E}_{\pi}[G]^2$$

Uses second moment of return.

Direct Variance (Sherstan et al., 2018)

$$\mathit{Var}_{\pi}(\mathit{G}) = \mathbb{E}_{\pi}\left[\left(\mathit{G} - \mathbb{E}_{\pi}[\mathit{G}]
ight)^{2}
ight]$$

Skips calculation of second moment of return.

Direct Variance

Sherstan et al. 2018, established benefits of direct variance in policy evaluation setting

- Noisy value estimates
- Eligibility traces with value estimation
- Variance estimated from off-policy samples
- Direct variance estimation simpler than Indirect variance

Mila

For discounted reward setting,

modify policy gradient objective to include direct variance estimator to learn variance-penalized policy

Mila

For discounted reward setting,

- modify policy gradient objective to include direct variance estimator to learn variance-penalized policy
- 2 develop three-timescale VPAC actor-critic algorithm by deriving gradient of direct variance for
 - on-policy
 - off-policy

Mila

For discounted reward setting,

- modify policy gradient objective to include direct variance estimator to learn variance-penalized policy
- 2 develop three-timescale VPAC actor-critic algorithm by deriving gradient of direct variance for
 - on-policy
 - off-policy
- establish convergence for on-policy setting

Mila

For discounted reward setting,

- modify policy gradient objective to include direct variance estimator to learn variance-penalized policy
- 2 develop three-timescale VPAC actor-critic algorithm by deriving gradient of direct variance for
 - on-policy
 - off-policy
- establish convergence for on-policy setting
- 4 demonstrate the usefulness of on- and off- policy VPAC in tabular, linear and Mujoco environments

Variance in Return

For a given policy π ,

$$\sigma_{\pi}(s, a) = \mathbb{E}_{\pi} \Big[\underbrace{\frac{\delta_{t, \pi}^{2}}{\max_{\text{meta-reward}}}}_{\bar{\gamma} = \gamma^{2}} \sigma_{\pi}(S_{t+1}, A_{t+1}) \big| S_{t} = s, A_{t} = a \Big]$$

Variance in Return

For a given policy π ,

$$\sigma_{\pi}(s, a) = \mathbb{E}_{\pi} \big[\underbrace{\frac{\delta_{t, \pi}^{2}}{\sum_{m \in ta-reward}} + \underbrace{\bar{\gamma}}_{\bar{\gamma} = \gamma^{2}} \sigma_{\pi}(S_{t+1}, A_{t+1}) \big| S_{t} = s, A_{t} = a \big]}_{\pi}$$

 $\delta_{t,\pi} = R_{t+1} + \gamma Q_{\pi}(S_{t+1}, A_{t+1}) - Q_{\pi}(S_t, A_t)$ [TD Error]

Mila

Variance in Return

For a given policy π ,

$$\sigma_{\pi}(s, a) = \mathbb{E}_{\pi} \big[\underbrace{\delta_{t, \pi}^{2}}_{\text{meta-reward}} + \underbrace{\bar{\gamma}}_{\bar{\gamma} = \gamma^{2}} \sigma_{\pi}(S_{t+1}, A_{t+1}) \big| S_{t} = s, A_{t} = a \big]$$

$$\delta_{t,\pi} = R_{t+1} + \gamma Q_{\pi}(S_{t+1}, A_{t+1}) - Q_{\pi}(S_t, A_t)$$
 [TD Error]

Optimization Problem

$$J_{d_0}(\theta) = \mathbb{E}_{s \sim d_0} \left[\sum_{a} \pi_{\theta}(a|s) \left(\overbrace{Q_{\pi}(s,a)}^{\text{value func}} - \underbrace{\psi}_{\text{tradeoff}} \overbrace{\sigma_{\pi}(s,a)}^{\text{variance func}} \right) \right]$$

Need to evaluate $\nabla_{\theta} V_{\pi}(s)$ and $\nabla_{\theta} \sigma_{\pi}(s)$ to tune θ .

AC Update

$$heta_{t+1} = heta_t + lpha
abla \log \pi_{ heta_t}(oldsymbol{A}_t|oldsymbol{S}_t) \Big(\gamma^t Q_{\pi_{ heta_t}}(oldsymbol{S}_t,oldsymbol{A}_t) \Big)$$

AC Update

$$heta_{t+1} = heta_t + lpha
abla \log \pi_{ heta_t}(oldsymbol{A}_t | oldsymbol{S}_t) \Big(oldsymbol{\gamma}^t oldsymbol{Q}_{\pi_{ heta_t}}(oldsymbol{S}_t, oldsymbol{A}_t) \Big)$$

VPAC update

$$\theta_{t+1} = \theta_t + \alpha \nabla \log \pi_{\theta_t}(A_t | S_t) \Big(\gamma^t Q_{\pi_{\theta_t}}(S_t, A_t) - \underbrace{\psi \gamma^{2t} \sigma_{\pi_{\theta_t}}(S_t, A_t)}_{V_{t+1}} \Big)$$

Variance Penalization

Multi Timescale Actor-Critic Update

 $I_Q, I_\sigma = 1, 1.$ At every time step *t*,

- Critic Update
 - 1 *Q* value Update: $w \leftarrow w + \alpha_Q \delta \nabla_w \hat{Q}(S, A, w)$
 - 2 σ value update: $z \leftarrow z + \alpha_{\sigma} \overline{\delta} \nabla_{z} \hat{\sigma}(S, A, z)$, where $\overline{\delta} \leftarrow \delta^{2} + \gamma^{2} \hat{\sigma}(S', A', z) - \hat{\sigma}(S, A, z)$

Actor Update

1
$$\theta \leftarrow \theta + \alpha_{\theta} \nabla_{\theta} \log(\pi_{\theta}(A|S)) \left(I_{Q} \hat{Q}(S, A, w) - \psi I_{\sigma} \hat{\sigma}(S, A, z) \right)$$

2 $I_{Q} * = \gamma$
3 $I_{\sigma} * = \gamma^{2}$

Learning Rate Speed

 $\alpha_Q > \alpha_\sigma > \alpha_\theta$

Off-Policy VPAC

Variance in Return

For a given target policy π and behavior policy b,

$$\sigma_{\pi}(s, a) = \mathbb{E}_{b} \left[\delta_{t,\pi}^{2} + \gamma^{2} \rho_{t+1}^{2} \sigma_{\pi}(S_{t+1}, A_{t+1}) \middle| S_{t} = s, A_{t} = a \right]$$

$$\delta_{t,\pi} = R_{t+1} + \gamma \rho_{t+1} Q_{\pi}(S_{t+1}, A_{t+1}) - Q_{\pi}(S_{t}, A_{t}) \quad [\text{TD Error}]$$

Off-Policy VPAC

Variance in Return

For a given target policy π and behavior policy b,

$$\sigma_{\pi}(s, a) = \mathbb{E}_{b} \left[\delta_{t,\pi}^{2} + \gamma^{2} \rho_{t+1}^{2} \sigma_{\pi}(S_{t+1}, A_{t+1}) \middle| S_{t} = s, A_{t} = a \right]$$
$$\delta_{t,\pi} = R_{t+1} + \gamma \rho_{t+1} Q_{\pi}(S_{t+1}, A_{t+1}) - Q_{\pi}(S_{t}, A_{t}) \quad [\text{TD Error}]$$

Optimization Problem

$$J_{d_0}(heta) = \mathbb{E}_{s \sim d_0, a \sim b} \Big[eta(s, a) ig(Q_{\pi}(s, a) - oldsymbol{\psi} \sigma_{\pi}(s, a) ig) \Big]$$

 $ho(s,a) = rac{\pi(s,a)}{b(s,a)}$ importance sampling correction

VAAC (Tamar et al. 2013)

VPAC

Trajectory

AC

Trajectory

AC

Ļ	S					
Ļ						
Ļ						
Ļ						
Ļ						
Ļ						
\rightarrow				G		

22 / 29

Trajectory

Variance in Return

AC

VPAC

Trajectory

AC

VPAC

Variance in Return

Variance Comparison

Direct Variance vs Indirect Variance

VPAC

Mujoco Environments

	PPO			VAAC	VPAC		
Environment	Mean	Var	Mean	Var	Mean	Var	
HalfCheetah Hopper Walker2d	1557 1944 3058	1.6 6.6 12.1	1525 1991 3102	0.8 (50%) 6.5 (1.5%) 12.5 (-3.3%)	1373 1624 2625	0.1 (93%) 4.0 (39.4%) 9.2 (23.9%)	

* Var in 1e5

Hopper

Experiments: Off-policy VPAC

Discrete Puddle World Environment

Conclusion

- Propose a direct variance related risk-sensitive criteria for control.
- Direct variance is simpler and better behaved than indirect variance.
- Propose multi-timescale actor-critic approach to learn variance penalized policy for on-policy and off-policy setting.
- Experiments supports VPAC results into lower variance trajectories compared to risk-neutral and indirect variance methods.

Future Work

- Provide convergence analysis for linear function approximation case as well.
- Observe the effects of scheduler on mean-variance tradeoff ψ to provide balance between exploration and variance reduction.